Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A worm with five faces

04.01.2016

Max Planck scientists discover new roundworm species on Réunion

For eight years, a research team headed by Ralf Sommer and Matthias Herrmann travel to Réunion Island in the Indian Ocean. The scientists from the Max Planck Institute of Developmental Biology have now discovered a new nematode species on the island.


Two of five different morphs of Pristionchus borbonicus, heads magnified as inserts.

© MPI f. Devolopmental Biology


Figs of Ficus mauritiana can be found growing on runners on the ground.

© MPI f. Devolopmental Biology

The discovered nematodes live inside of fig plants and at first sight they look totally different. Much to their surprise, the scientists found that all the worms belong to a single species, which can develop five different mouth forms. The nematodes are genetically identical, however their food source decides on the mouth form. They are an extreme example of evolutionary divergence within a species.

The discovered roundworms, so-called nematodes, live inside of wild figs and hitch hike on tiny pollinating fig wasps to reach new fig flowers. Ralf Sommer’s team called the new species Pristionchus borbonicus after the Île Bourbon, the old name of Réunion Island until 1848.

Much to their surprise, the scientists found that the tiny worms had five distinct mouth forms, differing so much from each other in their appearance that they were initially considered to belong to separate species. Conventional morphology, that is the study of the form and structure of organisms, examines organisms under the microscope and describes them as accurately as possible.

Only by sequencing the nematodes’ genomes, the Max Planck scientists managed to assign the five distinct mouth forms to a single species, namely the recently described Pristionchus borbonicus.

This is an extreme example of evolutionary divergence within one species and of variation in shape and form in the context of genetic identity. Interestingly, the researchers found similar roundworms of the same type in figs from Vietnam and South Africa. It is evident that the association with figs is a widespread phenomenon.

“The different mouth forms of Pristionchus borbonicus, that we have found now, are specialized for the preferred intake of bacteria, yeasts or other roundworms. So, obviously they occupy different ecological niches within the fig”, explains Ralf Sommer, Director of the Department for Evolutionary Biology. “With this team of specialists the species can exploit a large food spectrum and efficiently buffer fluctuations in the availability of a certain resource by changing the proportion of mouth forms.”

Until now Sommer and his team knew that the Pristionchus species, with which they have already been working for a long time, live on beetles and develop two different mouth forms, depending on the food supply and on the environment.

Thus, Pristionchus develops either a short wide mouth or a long narrow one. The wide-mouthed variant, which has a single, characteristic tooth, is suitable for carrying out predatory attacks. The narrow version, in contrast, is mainly used for grazing on bacterial food sources.

Thus, the tiny fig fruit has once again proven its reputation as a highly complex, co-evolved ecosystem with the fig wasp as the transmitter that reliably colonizes each generation of figs with a large number of different bacteria, yeasts, other microbes and roundworms. To understand the role that Pristionchus borbonicus plays in this intricate system is an exciting new subject of research for the MPI scientists. They already plan their next journey to Réunion to find new types of figs and nematodes.


Contact

Prof. Dr. Ralf J. Sommer
Department Evolutionary Biology

Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-371

Email: ralf.sommer@tuebingen.mpg.de


Nadja Winter
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-444

Fax: +49 7071 601-446

Email: presse-eb@tuebingen.mpg.de


Original publication
Susoy et al.

Large-scale diversification without genetic isolation in nematode symbionts of figs

Science Advances 2016;2:e1501031 (1 January, 2016)

Prof. Dr. Ralf J. Sommer | Max Planck Institute for Developmental Biology, Tübingen
Further information:
https://www.mpg.de/9815335/pristionchus-borbonicus?filter_order=L&research_topic=

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>