Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A versatile method to pattern functionalized nanowires

15.09.2016

A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of “nanowires,” providing a new tool for the development of novel nanodevices.

There has been considerable interest worldwide in the patterning of functionalized nanowires—which excel both in semiconductivity and as catalyzers—due to the potential application of such materials in nanodevice construction. Establishing a versatile approach to make functionalized nanowires, with a particular need to controlling spatial patterning, has been seen as essential.


(Left) Growth of tandem fluorescent fibrils. Scale bar = 20 micrometers. (Right) Fibrils extended from gold nanoparticles placed on the surface of a substrate. Scale bar = 1 micrometer.

The team, led by Professor Kazuyasu Sakaguchi of the Faculty of Science’s Department of Chemistry, had previously developed an effective method, named structure-controllable amyloid peptides (SCAPs), to control self-assembly of amyloid peptides, which are the building blocks of nanowires and also known as the causative molecule for Alzheimer’s disease.

In the latest research, the team combined the SCAPs with templated fibril growth—a distinctive quality of amyloid peptides—and succeeded in the formation of nanowires with tandem domain structures or a single nanowire extending from a specific starting point.

To create the tandem structure, the SCAPs method was used to make initial amyloid fibrils—marked by green fluorescence—which were used as a template, and to allow another type of amyloid peptide—marked by red fluorescence—extend from the starting fibrils.

Analysis showed a 67% tandem yield, three times higher than the efficiency yield of previous studies. Moreover, a few geometrical patterns could be discerned in the tandem structures, the proportion of which could be controlled by adjusting the peptide mix ratio.

Furthermore, by attaching template fibrils to gold nanoparticles placed on substrate surface through molecular recognition, then allowing new fibrils to extend from the template, the researchers succeeded in forming a single nanowire in a specific location. Achieving this kind of advanced pattern control is a world-first.

This method is applicable to the self-assembly of nanowires for nanoelectrodes created by lithography. “It could also be used to prepare a wide variety of fibril patterns and hence open up new avenues for the development of novel self-assembled nanodevices,” Professor Sakaguchi said.

Contacts:
Professor Kazuyasu Sakaguchi
Department of Chemistry, Faculty of Science
Hokkaido University
kazuyasu[at]sci.hokudai.ac.jp
http://wwwchem.sci.hokudai.ac.jp/~biochem/english/index.html

Naoki Namba (Media Officer)
Global Relations Office
Office of International Affairs
Hokkaido University
pr[at]oia.hokudai.ac.jp
Tel: +81-11-706-8034

Associated links

Journal information

Sakai H. et al., Patterning nanofibrils through the templated growth of multiple modified amyloid peptides, Scientific Reports, August 25, 2016. DOI: 10.1038/srep31993

Funding information

This work was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 24310152) from the Japan Society for the Promotion of Science (JSPS) (to K.S.), as well as a Research Fellowship from the JSPS for Young Scientists (No. 23-7100) (to H.S.).

Hokkaido University | Research SEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>