Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A versatile method to pattern functionalized nanowires

15.09.2016

A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of “nanowires,” providing a new tool for the development of novel nanodevices.

There has been considerable interest worldwide in the patterning of functionalized nanowires—which excel both in semiconductivity and as catalyzers—due to the potential application of such materials in nanodevice construction. Establishing a versatile approach to make functionalized nanowires, with a particular need to controlling spatial patterning, has been seen as essential.


(Left) Growth of tandem fluorescent fibrils. Scale bar = 20 micrometers. (Right) Fibrils extended from gold nanoparticles placed on the surface of a substrate. Scale bar = 1 micrometer.

The team, led by Professor Kazuyasu Sakaguchi of the Faculty of Science’s Department of Chemistry, had previously developed an effective method, named structure-controllable amyloid peptides (SCAPs), to control self-assembly of amyloid peptides, which are the building blocks of nanowires and also known as the causative molecule for Alzheimer’s disease.

In the latest research, the team combined the SCAPs with templated fibril growth—a distinctive quality of amyloid peptides—and succeeded in the formation of nanowires with tandem domain structures or a single nanowire extending from a specific starting point.

To create the tandem structure, the SCAPs method was used to make initial amyloid fibrils—marked by green fluorescence—which were used as a template, and to allow another type of amyloid peptide—marked by red fluorescence—extend from the starting fibrils.

Analysis showed a 67% tandem yield, three times higher than the efficiency yield of previous studies. Moreover, a few geometrical patterns could be discerned in the tandem structures, the proportion of which could be controlled by adjusting the peptide mix ratio.

Furthermore, by attaching template fibrils to gold nanoparticles placed on substrate surface through molecular recognition, then allowing new fibrils to extend from the template, the researchers succeeded in forming a single nanowire in a specific location. Achieving this kind of advanced pattern control is a world-first.

This method is applicable to the self-assembly of nanowires for nanoelectrodes created by lithography. “It could also be used to prepare a wide variety of fibril patterns and hence open up new avenues for the development of novel self-assembled nanodevices,” Professor Sakaguchi said.

Contacts:
Professor Kazuyasu Sakaguchi
Department of Chemistry, Faculty of Science
Hokkaido University
kazuyasu[at]sci.hokudai.ac.jp
http://wwwchem.sci.hokudai.ac.jp/~biochem/english/index.html

Naoki Namba (Media Officer)
Global Relations Office
Office of International Affairs
Hokkaido University
pr[at]oia.hokudai.ac.jp
Tel: +81-11-706-8034

Associated links

Journal information

Sakai H. et al., Patterning nanofibrils through the templated growth of multiple modified amyloid peptides, Scientific Reports, August 25, 2016. DOI: 10.1038/srep31993

Funding information

This work was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 24310152) from the Japan Society for the Promotion of Science (JSPS) (to K.S.), as well as a Research Fellowship from the JSPS for Young Scientists (No. 23-7100) (to H.S.).

Hokkaido University | Research SEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>