Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A versatile method to pattern functionalized nanowires

15.09.2016

A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of “nanowires,” providing a new tool for the development of novel nanodevices.

There has been considerable interest worldwide in the patterning of functionalized nanowires—which excel both in semiconductivity and as catalyzers—due to the potential application of such materials in nanodevice construction. Establishing a versatile approach to make functionalized nanowires, with a particular need to controlling spatial patterning, has been seen as essential.


(Left) Growth of tandem fluorescent fibrils. Scale bar = 20 micrometers. (Right) Fibrils extended from gold nanoparticles placed on the surface of a substrate. Scale bar = 1 micrometer.

The team, led by Professor Kazuyasu Sakaguchi of the Faculty of Science’s Department of Chemistry, had previously developed an effective method, named structure-controllable amyloid peptides (SCAPs), to control self-assembly of amyloid peptides, which are the building blocks of nanowires and also known as the causative molecule for Alzheimer’s disease.

In the latest research, the team combined the SCAPs with templated fibril growth—a distinctive quality of amyloid peptides—and succeeded in the formation of nanowires with tandem domain structures or a single nanowire extending from a specific starting point.

To create the tandem structure, the SCAPs method was used to make initial amyloid fibrils—marked by green fluorescence—which were used as a template, and to allow another type of amyloid peptide—marked by red fluorescence—extend from the starting fibrils.

Analysis showed a 67% tandem yield, three times higher than the efficiency yield of previous studies. Moreover, a few geometrical patterns could be discerned in the tandem structures, the proportion of which could be controlled by adjusting the peptide mix ratio.

Furthermore, by attaching template fibrils to gold nanoparticles placed on substrate surface through molecular recognition, then allowing new fibrils to extend from the template, the researchers succeeded in forming a single nanowire in a specific location. Achieving this kind of advanced pattern control is a world-first.

This method is applicable to the self-assembly of nanowires for nanoelectrodes created by lithography. “It could also be used to prepare a wide variety of fibril patterns and hence open up new avenues for the development of novel self-assembled nanodevices,” Professor Sakaguchi said.

Contacts:
Professor Kazuyasu Sakaguchi
Department of Chemistry, Faculty of Science
Hokkaido University
kazuyasu[at]sci.hokudai.ac.jp
http://wwwchem.sci.hokudai.ac.jp/~biochem/english/index.html

Naoki Namba (Media Officer)
Global Relations Office
Office of International Affairs
Hokkaido University
pr[at]oia.hokudai.ac.jp
Tel: +81-11-706-8034

Associated links

Journal information

Sakai H. et al., Patterning nanofibrils through the templated growth of multiple modified amyloid peptides, Scientific Reports, August 25, 2016. DOI: 10.1038/srep31993

Funding information

This work was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 24310152) from the Japan Society for the Promotion of Science (JSPS) (to K.S.), as well as a Research Fellowship from the JSPS for Young Scientists (No. 23-7100) (to H.S.).

Hokkaido University | Research SEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>