Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A twisted world -- chemists build a molecular banister


Chemists at the University of Basel in Switzerland have succeeded in twisting a molecule by combining molecular strands of differing lengths. The longer strand winds around a central axis like a staircase banister, creating a helical structure that exhibits special physical properties. The results were published in the renowned scientific journal Angewandte Chemie International Edition.

The chemistry of all substances is to a large extent defined by their spatial arrangement. Many molecules can be present in two forms (enantiomers), which behave like a person's right and left hand.

Based on the strands of different lengths (blue and gray), the new helical molecule (right) adopts a spatial arrangement (schematic diagram in the center) that resembles the banister of a spiral staircase (left).

Credit: (Fig: University of Basel, Department of Chemistry)

In particular, the organism makes a highly specific distinction between left- and right-handed molecules - a substance can, for example, be extremely active as a drug in one form, while its mirror image is entirely inert. The fundamental understanding of this "chirality", as it is called, has long been a central component of research in the field of chemistry.

Connecting strands of different sizes

The researchers headed by Professor Marcel Mayor in the Department of Chemistry at the University of Basel have developed a new approach to contort a small molecule into a form similar in appearance to the banister on a spiral staircase.

At the molecular level, the interlinking of two oligomer strands with different lengths forces to the longer strand to wind around the shorter on its own to balance out the discrepancy in length. This creates a helix with a uniform twisting direction. As a consequence the entire molecule becomes chiral.

The researchers were also able to demonstrate that it is possible to dynamically change the form of the helical molecule from left-handed to right and back again in just a few hours.

"It is not just the structural elegance of this molecule which makes it so unique," says Mayor. "Above all, it is a completely new way of constructing a continuous helix."

Efficient procedures for creating chiral compounds generate much interest in basic research and the industrial sector - they can, for example, be used in biological systems research, crop protection chemistry, and the pharmaceutical and fragrance industries. The project was financially supported by the Swiss National Science Foundation.

Original source

Rickhaus, M., Bannwart, L. M., Neuburger, M., Gsellinger, H., Zimmermann, K., Häussinger, D. and Mayor, M.
Inducing Axial Chirality in a "Geländer" Oligomer by Length Mismatch of the Oligomer Strands
Angewandte Chemie International Edition (2014) | doi: 10.1002/anie.201408424

Olivia Poisson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>