Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A twisted world -- chemists build a molecular banister

13.11.2014

Chemists at the University of Basel in Switzerland have succeeded in twisting a molecule by combining molecular strands of differing lengths. The longer strand winds around a central axis like a staircase banister, creating a helical structure that exhibits special physical properties. The results were published in the renowned scientific journal Angewandte Chemie International Edition.

The chemistry of all substances is to a large extent defined by their spatial arrangement. Many molecules can be present in two forms (enantiomers), which behave like a person's right and left hand.


Based on the strands of different lengths (blue and gray), the new helical molecule (right) adopts a spatial arrangement (schematic diagram in the center) that resembles the banister of a spiral staircase (left).

Credit: (Fig: University of Basel, Department of Chemistry)

In particular, the organism makes a highly specific distinction between left- and right-handed molecules - a substance can, for example, be extremely active as a drug in one form, while its mirror image is entirely inert. The fundamental understanding of this "chirality", as it is called, has long been a central component of research in the field of chemistry.

Connecting strands of different sizes

The researchers headed by Professor Marcel Mayor in the Department of Chemistry at the University of Basel have developed a new approach to contort a small molecule into a form similar in appearance to the banister on a spiral staircase.

At the molecular level, the interlinking of two oligomer strands with different lengths forces to the longer strand to wind around the shorter on its own to balance out the discrepancy in length. This creates a helix with a uniform twisting direction. As a consequence the entire molecule becomes chiral.

The researchers were also able to demonstrate that it is possible to dynamically change the form of the helical molecule from left-handed to right and back again in just a few hours.

"It is not just the structural elegance of this molecule which makes it so unique," says Mayor. "Above all, it is a completely new way of constructing a continuous helix."

Efficient procedures for creating chiral compounds generate much interest in basic research and the industrial sector - they can, for example, be used in biological systems research, crop protection chemistry, and the pharmaceutical and fragrance industries. The project was financially supported by the Swiss National Science Foundation.

Original source

Rickhaus, M., Bannwart, L. M., Neuburger, M., Gsellinger, H., Zimmermann, K., Häussinger, D. and Mayor, M.
Inducing Axial Chirality in a "Geländer" Oligomer by Length Mismatch of the Oligomer Strands
Angewandte Chemie International Edition (2014) | doi: 10.1002/anie.201408424

Olivia Poisson | EurekAlert!
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>