Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A sweet bacterium keeps track of time

18.11.2014

Researchers unravel the mystery of a sugar-coated bacterium

Researchers are studying the Caulobacter crescentus bacterium because of its developmental process and cellular cycle, which serve as models for a number of pathogenic bacteria.


Caulobacter crescentus's cellular division produces different daughter cells, some with capsules (black cells) and some without (red cells).

Credit: ©Ardissone_et_al, University of Geneva

They all have in common the use of polysaccharides to create a particularly effective protective envelope, or capsule. Professor Viollier's laboratory at the University of Geneva's (UNIGE) Faculty of Medicine has just unraveled the secrets of capsule formation during the cellular cycle and perhaps even identified potential Achilles' heel of bacteria. These results were published in the last edition of the eLife journal.

Silvia Ardissone, researcher in the Department of Microbiology and Molecular Medicine at UNIGE's Faculty of Medicine, works with Caulobacter crescentus, a bacterium that shows a particularly interesting cell division.

In fact, as with eukaryotic organisms, division of Caulobacter cells generates two different daughter cells, which can be easily separated. Researchers take advantage of this feature to obtain populations of synchronized bacteria that can be used to study specific cell cycle processes.

The sugar capsule, typical of pathogens

Like other bacteria, including several pathogenic species, Caulobacter crescentus presents a capsular envelope made of polysaccharides (sugars). This envelope protects bacteria from viruses, as well as from the human immune system. Professor Patrick Viollier's team studies how cells produce the capsule at the right time and just identified some of the underlying regulatory mechanisms.

One of the daughter cells lacks the capsule

Of the two different daughter cells generated by Caulobacter at each cell division only one is equipped with the capsule. This is what scientists noticed, and now they can now explain the reasons behind such a difference. In fact, the researchers showed that the synthesis of the capsule is controlled by the same mechanisms that regulate the cell cycle, and identified the protein that inhibits the production of the sugar capsule in one of the daughter cells.

"An uncharted path seems to have opened for the development of a new kind of antibiotics, products that would imitate the action of this inhibitory protein," comments Silvia Ardissone, who also imagines a type of medicine that "would strip the pathogens," and therefore disarm an entire bacteriological spectrum.

Silvia Ardissone | EurekAlert!
Further information:
http://www.unige.ch/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>