Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Super Adhesive Made From Intestinal Bacteria


Manufacturing mussel-based underwater adhesives for healing bone fractures with the help of reprogramed intestinal bacteria / spin-off planned

UniCat scientists have reprogrammed strains of the intestinal bacteria Escherichia Coli in such a way that the biological underwater adhesive of mussels can be created with help of the bacteria. The special feature of the new biogenic super glue is that its adhesive properties can be switched on by irradiation with light. This results in long-awaited possibilities for bonding broken bones or teeth that can be fused together again through this bio-adhesive. These findings will be applied in a spin-off.

© TU Berlin/PR/Tobias Rosenberg

Regenerative medicine urgently needs powerful adhesives that are biocompatible – well tolerated by the organism in which they are to be used. Such adhesives could treat superficial wounds, and could replace plates and screws which are commonly used to treat bone fractures. Biological adhesive proteins could not only allow the bonding of bone fragments, but also the fusion of the bone itself.

Biotechnological process for the production of the underwater mussel adhesive

The UniCat members Prof. Dr. Nediljko Budisa from the TU Berlin, Prof. Dr. Holger Dobbek from the HU Berlin and Prof. Dr. Andreas Möglich, now at the University of Bayreuth, have discovered a biotechnological process, through which the biological underwater adhesive of mussels can be produced. Mussels mainly live in the tidal and shelf areas of the oceans.

There, they must withstand strong currents and salt water. Mussels use a super adhesive to be able to hold on to the seabed. Even in low tides, when mussel beds are no longer covered by water, the adhesive still has to work.

Using this adhesive, the living mussels can adhere to almost any surface. The mussel releases threads from its foot, consisting of a protein glue. The most important component of this protein glue is the amino acid 3,4-dihydroxyphenylalanine, known as "DOPA."

How do scientists produce this super adhesive?

"To create these mussel proteins, we use intestinal bacteria, which we reprogrammed," explains Nediljko Budisa. "They are like our chemical factory through which we produce the super glue." For this purpose, a special enzyme, that is obtained from the bacterium Methanocaldococcus jannaschii, was altered by the researchers and introduced into Escherichia coli.

Subsequently, the modified intestinal bacteria are fed with the amino acid ONB-DOPA (ortho-nitrobenzyl DOPA). Within the ONB-DOPA molecule, the dihydroxyphenyl groups that are responsible for the strong adhesion are protected. This is similar to a sticker that has its self-adhesive surface covered by a protective film.

The reprogrammed bacterium now builds these amino acids ‘wrapped in protective film’ into proteins, and a bonding protein is obtained, whose adhesive sites are still protected. It is only after the protected adhesive protein has been separated from the bacteria and purified, that the protective groups are removed by means of light of a specific wavelength (365 nm). Through this, the adhesive protein loses its – figuratively spoken – protective film. Its adhesive points are activated and the protein can be targetedly used as a glue.

Spin-off planned

The production or enrichment of Mussel Adhesion Proteins (MAPs) had not yet been satisfactorily resolved: the isolation of these organic glues from mussels and other natural sources is inefficient and expensive. Thus, only 1 to 2 grams of this super adhesive can be obtained from 10,000 mussels. Furthermore, the glue-protein from mussels cannot be obtained homogeneously; that is, each batch is different.

An additional disadvantage is that the adhesive protein of the mussel must be used almost immediately due to its good adhesive properties. This new procedure from the UniCat scientists can lead to considerable improvements: an increased yield, the avoidance of animal suffering, and a more homogeneous product with adhesive properties that can be switched on.

Two scientists from Budisa’s working group are planning to establish a spin-off based on this idea that is both environmentally friendly and useful for humanity. "This strategy offers new ways to produce DOPA-based wet adhesives for use in industry and biomedicine with the potential to revolutionize bone surgery and wound healing," assert Christian Schipp and Dr. Matthias Hauf. In order to bring their business idea to life, they plan to use the Inkulab, the spin-off laboratory of the Excellence Cluster UniCat at the TU Berlin, and participate in its incubation program.

Prof. Reinhard Schomäcker, who initiated the start-up Inkulab is delighted: "Precisely for innovative ideas such as this, we founded Inkulab together with the Berlin economy. The science and business hub Berlin is greatly enriched by founding such companies. Germany benefits from this entrepreneurial spirit."

The research work on photoactivatable mussel-based underwater detachment proteins is a collaborative effort between three UniCat working groups, and has been published in the journal ChemBioChem:

Matthias Hauf, Florian Richter, Tobias Schneider, Thomas Faidt, Berta M. Martins, Tobias Baumann, Patrick Durkin, Holger Dobbek, Karin Jacobs, Andreas Möglich, and Nediljko Budisa: "Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code". ChemBioChem 2017, 18, 1819-1823, doi: 10.1002 / cbic.201700327

Image downloads:

For further information please contact:
Prof. Dr. Nediljko Budisa
TU Berlin
Institute of Chemistry
Phone: +49 (0)30 314-28821

Dr. Martin Penno
TU Berlin
Cluster of Excellence UniCat, Public Relations
Phone +49 (0)30 314-28592

Weitere Informationen:

Stefanie Terp | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Generation of a Stable Biradical
22.03.2018 | Julius-Maximilians-Universität Würzburg

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>