Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A stress protein is essential for antidepressant action

14.11.2014

Scientists discover an unexpected link between the well-known stress protein FKBP51, autophagy and the effectiveness of antidepressants

While depression is the most common psychiatric disease worldwide, only one third of the patients achieve sustained remission following treatment with currently available antidepressants. Scientists at the Max Planck Institute of Psychiatry in Munich have now unraveled a mechanism by which the stress-related protein FKBP51 affects antidepressant efficacy.


Many antidepressant drugs are only effective, when they interact with the stress-related protein FKBP51.

© MPI of Psychiatry / Isabella Wieser

In a combined interdisciplinary research approach working with cell cultures, mouse models and finally patient samples, the scientific team observed that FKBP51 acting together with antidepressants organizes intracellular complexes important for autophagy.

This intracellular process of “self-digestion” ensures efficient recycling of damaged material and has recently been linked to a range of different diseases. It could therefore serve as an effective target for novel antidepressant drugs and the implementation of personalized medicine.

The poor effectiveness of antidepressants is at least partially due to a lack in understanding of the mechanism of action of these drugs. The FK506 binding protein 51 (FKBP51) is a known regulator of stress-related receptors in the brain. It interacts with the so-called glucocorticoid receptor, thus influencing the stress hormone axis and stress physiology in general. Previous research at the Max Planck Institute of Psychiatry in Munich already provided a link between the genetic variants of FKBP51 and the efficacy of different antidepressants in patients.

Scientists around the group leaders Theo Rein and Mathias Schmidt have now unraveled the mechanism by which the protein FKBP51 affects antidepressant efficacy. The researchers found that FKBP51 orchestrates the composition and activity of protein complexes driving autophagy. Autophagy is an intracellular process of “self-digestion” that enables efficient recycling of damaged intracellular material, thereby ensuring cellular integrity and functioning. Autophagy has been established as a pivotal process in a range of (patho-) physiological conditions, including cancer, diabetes and more recently neurotransmission or neurodegeneration.

In the context of depression, the molecular actions of FKBP51 on autophagy synergize with those of antidepressants. “In cultured cells that do not express FKBP51, antidepressants could not elicit autophagy,” explains Nils Gassen. “Thus, FKBP51 sets the stage for antidepressants to act on the brain,” says Jakob Hartmann, together with Gassen first author of the current study.

Using mouse models, the researchers observed that missing FKBP51 largely abolished the effects of antidepressants on behavior and on autophagic markers. For example, treatment with the antidepressant paroxetine enhanced social behavior in stressed wildtype mice but not in those with deletion of FKBP51. To evaluate the clinical values of their findings, the team investigated the effects of FKBP51 in human blood cells. Protein analysis confirmed the correlation between the expression levels of FKBP51 and the levels of autophagy markers and FKBP51 was required for the effects of antidepressants on autophagic pathways. Treating cultivated blood cells from patients at the time of admission with antidepressants allowed prediction of the therapeutic outcome for the patient after six weeks.

“Taken together, our finding of FKBP51-dependent antidepressants’ effects on intracellular pathways, brain function and behavior strengthens the relevance of the genetic association of FKBP51 with antidepressant response, and furthermore substantiates the need for more targeted studies,” concludes Theo Rein. “Nevertheless, given the complexity of depression and the plethora of reported molecular effects of antidepressants, it is unlikely that all antidepressants, current or future, will depend on FKBP51 or any other single protein. Yet we suggest that autophagy-initiating mechanisms should be considered as a pharmacological target to improve the treatment of depression.”


Contact

Dr. Theo Rein

Project Group Leader
Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-531

Email: theorein@psych.mpg.de

 
Dr. Anna Niedl

Press and Public Relations
Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-263

Fax: +49 89 30622-370

Email: anna_niedl@psych.mpg.de


Original publication
Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, Kirmeier T, Kollmannsberger L, Wagner KV, Dedic N, Balsevich G, Deussing JM, Kloiber S, Lucae S, Holsboer F, Eder M, Uhr M, Ising M, Schmidt MV, Rein T.

Association of FKBP51 with Priming Autophagy Pathways and Mediating Antidepressant Treatment Response: Evidence in Cells, Mice and Humans.

PLOS Medicine, 11. November 2014

Dr. Theo Rein | Max-Planck-Institute

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>