Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A stress protein is essential for antidepressant action

14.11.2014

Scientists discover an unexpected link between the well-known stress protein FKBP51, autophagy and the effectiveness of antidepressants

While depression is the most common psychiatric disease worldwide, only one third of the patients achieve sustained remission following treatment with currently available antidepressants. Scientists at the Max Planck Institute of Psychiatry in Munich have now unraveled a mechanism by which the stress-related protein FKBP51 affects antidepressant efficacy.


Many antidepressant drugs are only effective, when they interact with the stress-related protein FKBP51.

© MPI of Psychiatry / Isabella Wieser

In a combined interdisciplinary research approach working with cell cultures, mouse models and finally patient samples, the scientific team observed that FKBP51 acting together with antidepressants organizes intracellular complexes important for autophagy.

This intracellular process of “self-digestion” ensures efficient recycling of damaged material and has recently been linked to a range of different diseases. It could therefore serve as an effective target for novel antidepressant drugs and the implementation of personalized medicine.

The poor effectiveness of antidepressants is at least partially due to a lack in understanding of the mechanism of action of these drugs. The FK506 binding protein 51 (FKBP51) is a known regulator of stress-related receptors in the brain. It interacts with the so-called glucocorticoid receptor, thus influencing the stress hormone axis and stress physiology in general. Previous research at the Max Planck Institute of Psychiatry in Munich already provided a link between the genetic variants of FKBP51 and the efficacy of different antidepressants in patients.

Scientists around the group leaders Theo Rein and Mathias Schmidt have now unraveled the mechanism by which the protein FKBP51 affects antidepressant efficacy. The researchers found that FKBP51 orchestrates the composition and activity of protein complexes driving autophagy. Autophagy is an intracellular process of “self-digestion” that enables efficient recycling of damaged intracellular material, thereby ensuring cellular integrity and functioning. Autophagy has been established as a pivotal process in a range of (patho-) physiological conditions, including cancer, diabetes and more recently neurotransmission or neurodegeneration.

In the context of depression, the molecular actions of FKBP51 on autophagy synergize with those of antidepressants. “In cultured cells that do not express FKBP51, antidepressants could not elicit autophagy,” explains Nils Gassen. “Thus, FKBP51 sets the stage for antidepressants to act on the brain,” says Jakob Hartmann, together with Gassen first author of the current study.

Using mouse models, the researchers observed that missing FKBP51 largely abolished the effects of antidepressants on behavior and on autophagic markers. For example, treatment with the antidepressant paroxetine enhanced social behavior in stressed wildtype mice but not in those with deletion of FKBP51. To evaluate the clinical values of their findings, the team investigated the effects of FKBP51 in human blood cells. Protein analysis confirmed the correlation between the expression levels of FKBP51 and the levels of autophagy markers and FKBP51 was required for the effects of antidepressants on autophagic pathways. Treating cultivated blood cells from patients at the time of admission with antidepressants allowed prediction of the therapeutic outcome for the patient after six weeks.

“Taken together, our finding of FKBP51-dependent antidepressants’ effects on intracellular pathways, brain function and behavior strengthens the relevance of the genetic association of FKBP51 with antidepressant response, and furthermore substantiates the need for more targeted studies,” concludes Theo Rein. “Nevertheless, given the complexity of depression and the plethora of reported molecular effects of antidepressants, it is unlikely that all antidepressants, current or future, will depend on FKBP51 or any other single protein. Yet we suggest that autophagy-initiating mechanisms should be considered as a pharmacological target to improve the treatment of depression.”


Contact

Dr. Theo Rein

Project Group Leader
Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-531

Email: theorein@psych.mpg.de

 
Dr. Anna Niedl

Press and Public Relations
Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-263

Fax: +49 89 30622-370

Email: anna_niedl@psych.mpg.de


Original publication
Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, Kirmeier T, Kollmannsberger L, Wagner KV, Dedic N, Balsevich G, Deussing JM, Kloiber S, Lucae S, Holsboer F, Eder M, Uhr M, Ising M, Schmidt MV, Rein T.

Association of FKBP51 with Priming Autophagy Pathways and Mediating Antidepressant Treatment Response: Evidence in Cells, Mice and Humans.

PLOS Medicine, 11. November 2014

Dr. Theo Rein | Max-Planck-Institute

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>