Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A spot of light cleaning

21.07.2015

A light-triggered cleanable, recyclable chip makes fabrication feasible for all

Throw away the detergent and forgo the elbow grease: pesky proteins can now be removed from surfaces by simply exposing them to light, thanks to a reusable titania template developed by A*STAR researchers1.


Self-cleaning, reusable protein patterning templates have been fabricated using both nanoimprint and interferometric lithography.

Adapted with permission from Ref. 1. Copyright 2015 American Chemical Society

Biologists have many reasons to pattern surfaces with proteins, from creating highly selective biosensors to studying fundamental processes such as tissue formation. What they don’t want, however, is for the proteins to stay on the surface indefinitely. Unfortunately, ridding a surface of proteins is a complicated and time-consuming task, which means that the majority of biologists typically throw away their substrates after a single use — leading to a high cost for consumables. Moreover, due to the complexity of fabrication systems, biologists usually outsource their chip manufacturing to engineers, which introduces delays and further exacerbates cost.

Karen Chong and her team at the A*STAR Institute of Materials Research and Engineering in Singapore recognized that these delays and costs could be avoided by designing a fabrication technique that non-engineers could use. “We wanted to demonstrate that fabrication and patterning techniques could move away from the traditional domains of microelectronics,” she recalls. “Specifically, we wanted to create fabrication techniques that could easily be adopted and replicated by biologists.”

Chong notes that to be practical, fabrication techniques must be either easy to use or have the potential to be scaled up to produce commercial quantities. Consequently, she and the team focused on two techniques: interferometric lithography for the former and nanoimprint lithography for the latter.

“Interferometric lithography techniques can be easily replicated by biologists without the need for a very complex or costly set-up in their laboratories,” she explains. “While nanoimprinting is not practical for smaller labs, it does allow us to scale up these samples into larger-area substrates.”

Both approaches yielded surfaces with titania nanostructures (see image) that were then covered with protein-resistant silanes. Exposure to ultraviolet light degrades the silanes, which allows proteins to adhere to the selected regions. After the protein-patterned substrates have served their purpose, Chong describes how “the proteins on the chips can be quickly removed, by just exposing the used substrates to ultraviolet light, without the need for elaborate cleaning methods.” The substrates can then be immediately reused without the need for further preparation.

“With the recyclable chip and the technique that we have demonstrated, fabrication techniques are no longer the exclusive domain of engineers,” remarks Chong.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering.


Reference
Moxey, M., Johnson, A., El-Zubir, O., Cartron, M., Dinachali, S. S. et al. Fabrication of self-cleaning, reusable titania templates for nanometer and micrometer scale protein patterning. ACS Nano 9, 6262–6270 (2015). | article

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7332
http://www.researchsea.com

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>