Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A spot of light cleaning

21.07.2015

A light-triggered cleanable, recyclable chip makes fabrication feasible for all

Throw away the detergent and forgo the elbow grease: pesky proteins can now be removed from surfaces by simply exposing them to light, thanks to a reusable titania template developed by A*STAR researchers1.


Self-cleaning, reusable protein patterning templates have been fabricated using both nanoimprint and interferometric lithography.

Adapted with permission from Ref. 1. Copyright 2015 American Chemical Society

Biologists have many reasons to pattern surfaces with proteins, from creating highly selective biosensors to studying fundamental processes such as tissue formation. What they don’t want, however, is for the proteins to stay on the surface indefinitely. Unfortunately, ridding a surface of proteins is a complicated and time-consuming task, which means that the majority of biologists typically throw away their substrates after a single use — leading to a high cost for consumables. Moreover, due to the complexity of fabrication systems, biologists usually outsource their chip manufacturing to engineers, which introduces delays and further exacerbates cost.

Karen Chong and her team at the A*STAR Institute of Materials Research and Engineering in Singapore recognized that these delays and costs could be avoided by designing a fabrication technique that non-engineers could use. “We wanted to demonstrate that fabrication and patterning techniques could move away from the traditional domains of microelectronics,” she recalls. “Specifically, we wanted to create fabrication techniques that could easily be adopted and replicated by biologists.”

Chong notes that to be practical, fabrication techniques must be either easy to use or have the potential to be scaled up to produce commercial quantities. Consequently, she and the team focused on two techniques: interferometric lithography for the former and nanoimprint lithography for the latter.

“Interferometric lithography techniques can be easily replicated by biologists without the need for a very complex or costly set-up in their laboratories,” she explains. “While nanoimprinting is not practical for smaller labs, it does allow us to scale up these samples into larger-area substrates.”

Both approaches yielded surfaces with titania nanostructures (see image) that were then covered with protein-resistant silanes. Exposure to ultraviolet light degrades the silanes, which allows proteins to adhere to the selected regions. After the protein-patterned substrates have served their purpose, Chong describes how “the proteins on the chips can be quickly removed, by just exposing the used substrates to ultraviolet light, without the need for elaborate cleaning methods.” The substrates can then be immediately reused without the need for further preparation.

“With the recyclable chip and the technique that we have demonstrated, fabrication techniques are no longer the exclusive domain of engineers,” remarks Chong.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering.


Reference
Moxey, M., Johnson, A., El-Zubir, O., Cartron, M., Dinachali, S. S. et al. Fabrication of self-cleaning, reusable titania templates for nanometer and micrometer scale protein patterning. ACS Nano 9, 6262–6270 (2015). | article

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7332
http://www.researchsea.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>