Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Sink for Signals

10.07.2014

Triplex RNA motif binds cellular cGMP after expression in mammalian cells

The transmission of signals within cells is dependent on cyclic guanosine monophosphate (cGMP) as an important secondary messenger. German scientists have now developed an RNA that binds cGMP. As reported in the journal Angewandte Chemie, it is possible to suppress the cGMP signal cascade in genetically modified cells that produce this RNA.

cGMP plays an important role in processes such as the relaxation of the smooth muscle tissue in blood vessels and consequently in the regulation of blood pressure. Malfunction of the cGMP signaling pathway may be related to cardiovascular disease.

Experimental manipulation of the endogenous cGMP levels in cells should lead to a better understanding of the spatial and temporal dynamics involved, as well as the functionality of cGMP. While there are many ways to stimulate cGMP, including the use of nitrogen monoxide (NO), researchers have thus far not had a means to artificially lower cellular cGMP concentration.

... more about:
»DNA »Nucleic »RNA »amino »cGMP »stimulate

Scientists from the Universities of Stuttgart and Tübingen have now developed a method by which they can “trap” cGMP molecules in cells. To achieve this they genetically modified the cells to produce specially designed RNA molecules that bind cGMP.

RNA, ribonucleic acid, is familiar to us as a building block of ribosomes, an amino acid transporter, and as messenger RNA, which copies blueprints from DNA and transports them to the ribosomes, where protein synthesis takes place. Further physiological roles have also now been found, such as catalytically active RNAs or RNAs that regulate gene expression by binding to complementary sequences. In addition, there are riboswitches, sequences in the messenger RNA that bind low-molecular metabolites and thus regulate gene expression.

A team led by Stuttgart chemist Clemens Richert and Tübingen biochemist Robert Feil has now successfully used specially developed RNA sequences to reduce the concentration of small molecules capable of base pairing in cells. To achieve this, the Stuttgart chemists developed a special folding motif that binds cGMP. The structure is based on a triple strand of RNA, known as a triplex. One of the three strands forms a loop that frames the binding cavity for cGMP. This motif is repeated multiple times in a long continuous sequence, so the researchers named their RNA construct “endless”.

In order to test the functionality of the “endless” construct in living cells, the biochemists in Tuebingen produced an artificial gene that codes for the “endless” RNA, and introduced it into cells obtained from the blood vessels of mice. This is a well-established model for the study of cGMP signaling pathways. In these cells, NO triggers signal cascades transmitted by cGMP. In cells that expressed “endless”, these cascades were suppressed and the cGMP level was significantly lower than in control cells. The “endless” RNA acts as a sink for cGMP and should be very useful in further research into the physiological role of cGMP.

About the Author

Clemens Richert is a synthetic organic chemist and Chair of Biological Chemistry at the University of Stuttgart. His research focuses on functional nucleic acids. He is also the chairman of the German Nucleic Acid Chemistry Society, DNG e.V. (http://dnarna.de).

Author: Clemens Richert, Universität Stuttgart (Germany), http://chip.chemie.uni-stuttgart.de/

Title: Endless: A Purine Binding Motif that Can Be Expressed in Cells

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201403579

Clemens Richert | Angewandte Chemie

Further reports about: DNA Nucleic RNA amino cGMP stimulate

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>