Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Sink for Signals


Triplex RNA motif binds cellular cGMP after expression in mammalian cells

The transmission of signals within cells is dependent on cyclic guanosine monophosphate (cGMP) as an important secondary messenger. German scientists have now developed an RNA that binds cGMP. As reported in the journal Angewandte Chemie, it is possible to suppress the cGMP signal cascade in genetically modified cells that produce this RNA.

cGMP plays an important role in processes such as the relaxation of the smooth muscle tissue in blood vessels and consequently in the regulation of blood pressure. Malfunction of the cGMP signaling pathway may be related to cardiovascular disease.

Experimental manipulation of the endogenous cGMP levels in cells should lead to a better understanding of the spatial and temporal dynamics involved, as well as the functionality of cGMP. While there are many ways to stimulate cGMP, including the use of nitrogen monoxide (NO), researchers have thus far not had a means to artificially lower cellular cGMP concentration.

... more about:
»DNA »Nucleic »RNA »amino »cGMP »stimulate

Scientists from the Universities of Stuttgart and Tübingen have now developed a method by which they can “trap” cGMP molecules in cells. To achieve this they genetically modified the cells to produce specially designed RNA molecules that bind cGMP.

RNA, ribonucleic acid, is familiar to us as a building block of ribosomes, an amino acid transporter, and as messenger RNA, which copies blueprints from DNA and transports them to the ribosomes, where protein synthesis takes place. Further physiological roles have also now been found, such as catalytically active RNAs or RNAs that regulate gene expression by binding to complementary sequences. In addition, there are riboswitches, sequences in the messenger RNA that bind low-molecular metabolites and thus regulate gene expression.

A team led by Stuttgart chemist Clemens Richert and Tübingen biochemist Robert Feil has now successfully used specially developed RNA sequences to reduce the concentration of small molecules capable of base pairing in cells. To achieve this, the Stuttgart chemists developed a special folding motif that binds cGMP. The structure is based on a triple strand of RNA, known as a triplex. One of the three strands forms a loop that frames the binding cavity for cGMP. This motif is repeated multiple times in a long continuous sequence, so the researchers named their RNA construct “endless”.

In order to test the functionality of the “endless” construct in living cells, the biochemists in Tuebingen produced an artificial gene that codes for the “endless” RNA, and introduced it into cells obtained from the blood vessels of mice. This is a well-established model for the study of cGMP signaling pathways. In these cells, NO triggers signal cascades transmitted by cGMP. In cells that expressed “endless”, these cascades were suppressed and the cGMP level was significantly lower than in control cells. The “endless” RNA acts as a sink for cGMP and should be very useful in further research into the physiological role of cGMP.

About the Author

Clemens Richert is a synthetic organic chemist and Chair of Biological Chemistry at the University of Stuttgart. His research focuses on functional nucleic acids. He is also the chairman of the German Nucleic Acid Chemistry Society, DNG e.V. (

Author: Clemens Richert, Universität Stuttgart (Germany),

Title: Endless: A Purine Binding Motif that Can Be Expressed in Cells

Angewandte Chemie International Edition, Permalink to the article:

Clemens Richert | Angewandte Chemie

Further reports about: DNA Nucleic RNA amino cGMP stimulate

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>