Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A simple cell holds 42 million protein molecules, scientists reveal

11.01.2018

It's official--there are some 42 million protein molecules in a simple cell, revealed a team of researchers led by Grant Brown, a biochemistry professor in the University of Toronto's Donnelly Centre for Cellular and Biomolecular Research. Analyzing data from almost two dozen large studies of protein abundance in yeast cells, the team was able to produce for the first time reliable estimates for the number of molecules for each protein, as revealed in a study published this week in the journal Cell Systems.

The work was done in collaboration with Anastasia Baryshnikova, a U of T alum and now Principal Investigator at Calico, a California biotechnology company that focuses on aging.


Yeast cells expressing proteins that carry green and red fluorescent tags to make them visible.

Credit: Brendan Ho

Proteins make up our cells and do most of the work in them. This way, they bring genetic code to life because the recipes for building proteins are stored within the genes' DNA code.

Explaining the work, Brown said that given that "the cell is the functional unit of biology, it's just a natural curiosity to want to know what's in there and how much of each kind."

Curiosity notwithstanding, there's another reason why scientists would want to tally up proteins. Many diseases are caused by either having too little or too much of a certain protein. The more scientists know about how protein abundance is controlled, the better they'll be able to fix it when it goes awry.

Although researchers have studied protein abundance for years, the findings were reported in arbitrary units, sowing confusion in the field and making it hard to compare data between different labs.

Many groups, for example, have estimated protein levels by sticking a fluorescent tag on protein molecules and inferring their abundance from how much the cells glow. But the inevitable differences in instrumentation meant that different labs recorded different levels of brightness emitted by the cells. Other labs measured proteins levels using completely different approaches.

"It was hard to conceptualize how many proteins there are in the cell because the data was reported on drastically different scales," said Brandon Ho, graduate student in the Brown lab who did most of the work on the project.

To convert arbitrary measures into the number of molecules per cell, Ho turned to baker's yeast, an easy to study single-cell microbe that offers a window into how a basic cell works. Yeasts are also the only organism for which there was enough data available to calculate molecule number for each of the 6,000 proteins encoded by the yeast genome thanks to 21 separate studies that measured abundance of all yeast proteins. No such datasets exist for human cells where each cell type contains only a subset of proteins encoded by the 20,000 human genes.

The wealth of existing yeast data meant that Ho could put it all together, benchmark it and convert the vague measures of protein abundance into "something that makes sense, in other words, molecules per cell," said Brown.

Ho's analysis reveals for the first time how many molecules of each protein there are in the cell, with a total number of molecules estimated to be around 42 million. The majority of proteins exist within a narrow range--between 1000 and 10,000 molecules. Some are outstandingly plentiful at more than half a million copies, while others exist in fewer than 10 molecules in a cell.

Analyzing the data, the researchers were able to glean insights into the mechanisms by which cells control abundance of distinct proteins, paving the way for similar studies in human cells that could help reveal molecular roots of disease. They also showed that a protein's supply correlates with its role in the cell, which means that it may be possible to use the abundance data to predict what proteins are doing.

Finally, in a finding that will rejoice cell biologists everywhere, Ho showed that the common practice of stitching glowing tags onto proteins has little effect on their abundance. While the approach has revolutionized the study of protein biology, netting its discoverers Osamu Shimomura, Martin Chalfie and Roger Tsien the Nobel prize in chemistry in 2008, it also stoked worries that tagging could affect protein durability, which would flaw the data.

"This study will be of great value to the entire yeast community and beyond," said Robert Nash, senior biocurator of the Saccharomyces Genome Database that will make the data available to researchers worldwide. He also added that by presenting protein abundance "in a common and intuitive format, the Brown lab has provided other researchers with the opportunity to reexamine this data and thereby facilitate study-to-study comparisons and hypothesis generation."

Media Contact

Jovana Drinjakovic
jovana.drinjakovic@gmail.com
416-946-8253

 @UofTNews

http://www.utoronto.ca 

Jovana Drinjakovic | EurekAlert!

More articles from Life Sciences:

nachricht 'Decorated' stem cells could offer targeted heart repair
11.01.2018 | North Carolina State University

nachricht Malaria parasite packs genetic material for trip from mosquitoes to humans
11.01.2018 | Penn State

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

Im Focus: Leaving Flatland – Quantum Hall Physics in 4D

Researchers from LMU/MPQ implement a dynamical version of the 4D quantum Hall effect with ultracold atoms in an optical superlattice potential

In literature, the potential existence of extra dimensions was discussed in Edwin Abbott’s satirical novel “Flatland: A Romance of Many Dimensions” (1884),...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Malaria parasite packs genetic material for trip from mosquitoes to humans

11.01.2018 | Life Sciences

A close-up look at an uncommon underwater eruption

11.01.2018 | Earth Sciences

A simple cell holds 42 million protein molecules, scientists reveal

11.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>