Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Protective Shield against the Heavy Metal Uranium


Microorganisms can better withstand the heavy metal uranium when glutathione is present, a molecule composed of three amino acids. Scientists from the German based Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Bern in Switzerland have now proven this resilience by closely examining cell heat balance. They discovered that glutathione is an effective decontamination agent. The studies provide important insights into bioremediation of mining waste piles and other contaminated areas with the help of bacteria or plants.

Living cells are small power stations in which various chemical reactions take place, releasing tiny amounts of heat. Metabolism is stimulated when the cells are exposed to uranium, without, however, leading to increased growth.

If uranium is built into the molecule glutathione, the chemical toxicity of the heavy metal decreases.

HZDR / Karim Fahmy

This extra effort is detectable in the organisms as increased heat emission – signaling their fight against the toxin. The four-person team from Dresden and Bern (Dr. Muhammad H. Obeid, Dr. Jana Oertel, Prof. Marc Solioz, Prof. Karim Fahmy) established a highly sensitive method, known as microcalorimetry, with which this power can be measured – even if it lies only in the microwatt (a millionth of a watt) range.

Through their tests, the researchers furthermore determine the culture cell count and thus register how the cells divide and grow. Karim Fahmy summarizes the results: “We have found out that the metabolism with uranium becomes less efficient. The cells produce more heat but not more cells. They’re virtually running a temperature!”

The organisms clearly use their energy for defense mechanisms rather than for growth. A completely different picture emerges when glutathione is present. In this case, the cells continue to grow. “Glutathione lowers uranium’s chemical toxicity. The cells better withstand the contamination," says the biophysicist.

A bacterium from cheese production, Lactococcus lactis, was chosen for the studies. The researchers used a strain with an artificially introduced hereditary predisposition for glutathione production. The gene can be selectively switched on or off. This allows precise control of whether the cells produce glutathione or not. Karim Fahmy explains, “We thereby have a clean model and do not need to add the glutathione from the outside.” Disruptive factors are thus excluded.

These new insights on the protective effects of glutathione are important for innovative strategies in biological heavy metal decontamination in the environment. The process known as bioremediation attempts to harness plants or bacteria for the removal of toxins from contaminated sites. The organisms absorb the contaminants, which are removed from the site under controlled conditions through a subsequent “harvest”. The procedure also appears suitable for uranium decontamination. As is clear from the HZDR researchers’ findings, a preference should be given to organisms with their own glutathione biosynthesis.

Glutathione has already been discussed for quite a long time as a decontaminant because it is an antioxidant and, for example, renders free radicals harmless. Until now, however, strong proof of its protective effects against uranium has been lacking. The Dresden researchers have now made up for this lack. The results are particularly significant because they were obtained from living organisms.

An insoluble and therefore non-toxic complex

The researchers could also gain further insights on how the interaction between heavy metals and glutathione works. Karim Fahmy says, “We see that uranium binds to the carboxyl group of glutathione. This results in an insoluble complex that is no longer toxic.” This applies to the concentrations studied, 10 to 150 micromolar uranium – a content which is typically found at contaminated sites in the German Ore Mountains. Comparative measurements showed that for copper, entirely different reactions occur within the cells. Glutathione fails to deploy any protective effects here.

Measuring metabolic warming for environmentally relevant risk evaluation of heavy metals is intensely promoted at the Institute of Resource Ecology at the HZDR. The unique opportunity to also work with radioactive materials at the institute results in entirely new insights on the effects of low concentrations of radionuclides in organisms, relevant in the fields of medicine and environmental biology.

Publication: Muhammad H. Obeid, Jana Oertel, Marc Solioz, Karim Fahmy, „Mechanism of attenuation of uranyl toxicity by glutathione in Lactococcus lactis“, in: Applied and Environmental Microbiology, June 2016 (doi:10.1128/AEM.00538-16)

Further information:
Prof. Dr. Karim Fahmy
Institute of Ressource Ecology at the HZDR
Phone +49 0351 260-2952 | Email

Media contact:
Christine Bohnet | Press spokesperson
Phone +49 351 260-2450 | Email
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden, Germany |

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) conducts research in the sectors energy, health, and matter. It focuses its research on the following topics:
• How can energy and resources be used efficiently, safely, and sustainably?
• How can malignant tumors be visualized and characterized more precisely and treated effectively?
• How do matter and materials behave in strong fields and in the smallest dimensions?
The HZDR has been a member of the Helmholtz Association, Germany’s largest research organization, since 2011. It has four locations (Dresden, Leipzig, Freiberg, Grenoble) and employs about 1,100 people – approximately 500 of whom are scientists, including 150 doctoral candidates.

Weitere Informationen:

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>