Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Protective Shield against the Heavy Metal Uranium

06.06.2016

Microorganisms can better withstand the heavy metal uranium when glutathione is present, a molecule composed of three amino acids. Scientists from the German based Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Bern in Switzerland have now proven this resilience by closely examining cell heat balance. They discovered that glutathione is an effective decontamination agent. The studies provide important insights into bioremediation of mining waste piles and other contaminated areas with the help of bacteria or plants.

Living cells are small power stations in which various chemical reactions take place, releasing tiny amounts of heat. Metabolism is stimulated when the cells are exposed to uranium, without, however, leading to increased growth.


If uranium is built into the molecule glutathione, the chemical toxicity of the heavy metal decreases.

HZDR / Karim Fahmy

This extra effort is detectable in the organisms as increased heat emission – signaling their fight against the toxin. The four-person team from Dresden and Bern (Dr. Muhammad H. Obeid, Dr. Jana Oertel, Prof. Marc Solioz, Prof. Karim Fahmy) established a highly sensitive method, known as microcalorimetry, with which this power can be measured – even if it lies only in the microwatt (a millionth of a watt) range.

Through their tests, the researchers furthermore determine the culture cell count and thus register how the cells divide and grow. Karim Fahmy summarizes the results: “We have found out that the metabolism with uranium becomes less efficient. The cells produce more heat but not more cells. They’re virtually running a temperature!”

The organisms clearly use their energy for defense mechanisms rather than for growth. A completely different picture emerges when glutathione is present. In this case, the cells continue to grow. “Glutathione lowers uranium’s chemical toxicity. The cells better withstand the contamination," says the biophysicist.

A bacterium from cheese production, Lactococcus lactis, was chosen for the studies. The researchers used a strain with an artificially introduced hereditary predisposition for glutathione production. The gene can be selectively switched on or off. This allows precise control of whether the cells produce glutathione or not. Karim Fahmy explains, “We thereby have a clean model and do not need to add the glutathione from the outside.” Disruptive factors are thus excluded.

These new insights on the protective effects of glutathione are important for innovative strategies in biological heavy metal decontamination in the environment. The process known as bioremediation attempts to harness plants or bacteria for the removal of toxins from contaminated sites. The organisms absorb the contaminants, which are removed from the site under controlled conditions through a subsequent “harvest”. The procedure also appears suitable for uranium decontamination. As is clear from the HZDR researchers’ findings, a preference should be given to organisms with their own glutathione biosynthesis.

Glutathione has already been discussed for quite a long time as a decontaminant because it is an antioxidant and, for example, renders free radicals harmless. Until now, however, strong proof of its protective effects against uranium has been lacking. The Dresden researchers have now made up for this lack. The results are particularly significant because they were obtained from living organisms.

An insoluble and therefore non-toxic complex

The researchers could also gain further insights on how the interaction between heavy metals and glutathione works. Karim Fahmy says, “We see that uranium binds to the carboxyl group of glutathione. This results in an insoluble complex that is no longer toxic.” This applies to the concentrations studied, 10 to 150 micromolar uranium – a content which is typically found at contaminated sites in the German Ore Mountains. Comparative measurements showed that for copper, entirely different reactions occur within the cells. Glutathione fails to deploy any protective effects here.

Measuring metabolic warming for environmentally relevant risk evaluation of heavy metals is intensely promoted at the Institute of Resource Ecology at the HZDR. The unique opportunity to also work with radioactive materials at the institute results in entirely new insights on the effects of low concentrations of radionuclides in organisms, relevant in the fields of medicine and environmental biology.

Publication: Muhammad H. Obeid, Jana Oertel, Marc Solioz, Karim Fahmy, „Mechanism of attenuation of uranyl toxicity by glutathione in Lactococcus lactis“, in: Applied and Environmental Microbiology, June 2016 (doi:10.1128/AEM.00538-16)

Further information:
Prof. Dr. Karim Fahmy
Institute of Ressource Ecology at the HZDR
Phone +49 0351 260-2952 | Email k.fahmy@hzdr.de

Media contact:
Christine Bohnet | Press spokesperson
Phone +49 351 260-2450 | Email c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden, Germany | www.hzdr.de

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) conducts research in the sectors energy, health, and matter. It focuses its research on the following topics:
• How can energy and resources be used efficiently, safely, and sustainably?
• How can malignant tumors be visualized and characterized more precisely and treated effectively?
• How do matter and materials behave in strong fields and in the smallest dimensions?
The HZDR has been a member of the Helmholtz Association, Germany’s largest research organization, since 2011. It has four locations (Dresden, Leipzig, Freiberg, Grenoble) and employs about 1,100 people – approximately 500 of whom are scientists, including 150 doctoral candidates.

Weitere Informationen:

https://www.hzdr.de/presse/bioremediation

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>