Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Protective Cap for Bacterial RNA

03.08.2016

Heidelberg researchers unravel structure and function of bacterial decapping enzyme

For the first time, researchers from Heidelberg University have deciphered the function of the so-called decapping enzyme in bacteria. These molecular helpers remove the protective cap at the start of ribonucleic acid (RNA) molecules.


Source: Katharina Höfer/IPMB

Model of the NudC enzyme (in grey and purple) that binds to the NAD cap of bacterial ribonucleic acid.

This decapping destabilises the ribonucleic acid, thus allowing degradation to begin in the cells. While these processes are well understood in the messenger RNA of cells in higher organisms, Prof. Dr Andres Jäschke and his bioorganic chemistry working group now revealed these mechanisms in bacterial RNA.

Until now, scientists believed that bacteria did not possess this cap structure. The results of this research were published in the journal “Nature Chemical Biology”.

Ribonucleic acids primarily serve as messengers or scaffold molecules in cells, but they also accelerate key biochemical reactions and regulate metabolic processes. In higher organisms, the eukaryotes, messenger RNA (mRNA) usually has a molecular cap at its start; this chemical modification stabilises the messenger RNA, protecting it from degradation and modification.

In the prevailing scientific view, bacterial RNA lacks this cap structure. In 2015, however, Prof. Jäschke and his team discovered a modification in certain bacterial RNAs that is structurally similar to the cap on the messenger RNA in eukaryotes.

The cap is nicotinamide adenine dinucleotide (NAD), a coenzyme that plays a key role in metabolism. If NAD is used as a cap in ribonucleic acid, however, it protects the RNA from degradation and modification. Once the NAD cap is removed, the RNA can be degraded in order to initiate metabolic processes.

Prof. Jäschke and his team identified an enzyme known as NudC that is responsible for removing the cap. The Heidelberg researchers from the Institute for Pharmacy and Molecular Biotechnology succeeded in analysing NudC from the Escherichia coli bacterium using high-resolution crystal structures, which enabled them to decode the enzyme's function.

Prof. Jäschke emphasises that the structural investigations open up a new field of research, because possible interaction partners of NudC as well as other decapping enzymes in other bacteria need to be identified. The researchers hope their current findings will fuel new interest in identifying unknown cap structures in other microorganisms as well as their functional mechanisms.

Original publication:
K. Höfer, S. Li, F. Abele, J. Frindert, J. Schlotthauer, J. Grawenhoff, J. Du, D.J. Patel and A. Jäschke: Structure and function of the bacterial decapping enzyme NudC. Nature Chemical Biology (published online 18 July 2016), doi: 10.1038/nchembio.2132

Contact:
Prof. Dr Andres Jäschke
Institute for Pharmacy and Molecular Biotechnology
Phone +49 6221 54-4853
jaeschke@uni-hd.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.ipmb.uni-heidelberg.de/chemie/jaeschke/index.html

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>