Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel “Kabuto-like” nickel catalyst forms bioactive frameworks from low-cost phenol derivatives

28.05.2014

Researchers at ITbM developed a new nickel catalyst with a “Kabuto-like” structure that catalyzed the cross-coupling reaction between carbonyl compounds and readily available phenol derivatives, to form α-arylketones, which are found in many biologically active compounds.

Researchers at ITbM, Nagoya University developed a new nickel catalyst with a “Kabuto-like” structure that was found to catalyze the cross-coupling reaction between carbonyl compounds and readily available phenol derivatives, to form α-arylketones, which are found in many biologically active compounds (Kabuto = a helmet worn by Japanese samurai).


Framework for pharmaceuticals and organic materials

Copyright : ITbM, Nagoya University


Structural optimization of nickel catalyst

Copyright : ITbM, Nagoya University


Bio-active compounds containing a carbonyl aryl structure

Nagoya, Japan – Professors Kenichiro Itami and Junichiro Yamaguchi of the Institute of Transformative Bio-Molecules (WPI-ITbM) and graduate students Ryosuke Takise and Kei Muto of Nagoya University have succeeded in developing a novel nickel catalyst to catalyze the cross-coupling reaction between carbonyl compounds and phenol derivatives.

Phenol derivatives are known to be readily available starting materials, and this reaction has enabled the facile generation of α-arylketone compounds (aryl = aromatic ring; ketone = a carbonyl (C=O functionality with a carbon oxygen double bond) bonded to two other carbon atoms), which constitute the framework of many pharmaceuticals and organic materials.

The study published online on May 20, 2014 in Angewandte Chemie International Edition, is expected to become an important tool in synthesizing biologically active molecules and a range of versatile organic materials containing the α-arylketone framework.

Cross-coupling reactions catalyzed by transition metals enables direct formation of carbon-carbon bonds, which is widely utilized in the formation of a vast number of organic frameworks. This strategy that won the 2010 Nobel Prize in Chemistry extends to α-arylation reactions, which allows incorporation of aromatic rings into carbonyl compounds through carbon-carbon bond formation, mainly using palladium as a catalyst. Many organic molecules such as amino acids contain carbonyl groups.

Thus, α-arylation, which links carbonyl compounds to aromatic rings present in an array of organic molecules, has been used as one of the main reactions to create the organic backbone of many pharmaceuticals and organic materials. Professors Itami and Yamaguchi along with co-workers have been working to develop a new economical catalyst to conduct α-arylation reactions using readily available phenol derivatives as starting materials. This reaction system is envisaged to lead to the facile production of α-arylketones on an industrial scale.

Conventional methods for α-arylation have used palladium as a metal catalyst. “Since 2009, we have been looking at the potential of nickel as a cross-coupling catalyst, which is a more economical catalyst relative to palladium”, says Professor Yamaguchi, one of the leaders of this research, “through our endeavors to develop improved conditions, we have found that phenol derivatives can act as readily available aryl coupling partners”, he describes. Aryl substrates have mainly utilized aryl halides, which are halogenated compounds resulting in toxic wastes. Phenol derivatives on the other hand are usually less toxic and are more readily available compared to aryl halides.

Itami and his group have been working on the development of new generation cross-coupling methods using nickel as a catalyst. They have already reported various cross-coupling reactions including those between aromatic compounds and phenol derivatives, C-H coupling reactions using esters along with reactions linking aromatic rings and alkenes. These pioneering studies have been accomplished by enhancing the reactivity of nickel through tuning of various ligands. One of the effective ligands discovered in 2011 is the dcype (1,2-bisdicyclohexylphosphinoethane) ligand, which is used with nickel to activate phenol derivatives. However, the nickel(dcype) catalyst was insufficient to initiate the cross-coupling between carbonyl compounds and phenol derivatives.

“We have screened various ligands and found that dcypt (1,2-bisdicyclohexylphosphinothiophene), which bears a thiophene (a 5-membered heterocycle containing sulfur) unit, acts as an effective air-stable ligand to improve the reactivity of nickel and bring about this reaction in high yield. Moreover, we were able to use a weak base to carry out this reaction, which improves the substrate scope of this reaction”, explains graduate students Takise and Muto who carried out the experiments.

Development of this new nickel catalyst has enabled the creation of a variety of α-arylketone compounds, including an estrone derivative and an amino acid tyrosine derivative, both bearing the phenol moiety. Professor Itami elaborates, “Many natural products and bioactive compounds contain the α-arylketone framework. Our relatively low-cost nickel-dcypt catalyst has exhibited high activity to couple readily available phenol derivatives in high yield. This system has the potential to be applicable in the synthesis of molecules that can control biological systems of plants and animals, which is one of the main research themes running in our new institute (ITbM).”

This article “Nickel-Catalyzed α-Arylation of Ketones with Phenol Derivatives” by Ryosuke Takise, Kei Muto, Junichiro Yamaguchi and Kenichiro Itami is published online on May 20, 2014 in Angewandte Chemie International Edition.
DOI: 10.1002/anie.201403823

About WPI-ITbM (http://www.itbm.nagoya-u.ac.jp/)
The World Premier International Research Center Initiative (WPI) for the Institute of Transformative Bio-Molecules (ITbM) at Nagoya University in Japan is committed to advance the integration of synthetic chemistry, plant/animal biology and theoretical science, all of which are traditionally strong fields in the university. As part of the Japanese science ministry’s MEXT program, the ITbM aims to develop transformative bio-molecules, innovative functional molecules capable of bringing about fundamental change to biological science and technology. Research at the ITbM is carried out in a “Mix-Lab” style, where international young researchers from multidisciplinary fields work together side-by-side in the same lab. Through these endeavors, the ITbM will create “transformative bio-molecules” that will dramatically change the way of research in chemistry, biology and other related fields to solve urgent problems, such as environmental issues, food production and medical technology that have a significant impact on the society.

Author Contact
Professor Kenichiro Itami
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL/FAX: +81-52-788-6098
E-mail: itami@chem.nagoya-u.ac.jp
URL for Group Homepage: http://synth.chem.nagoya-u.ac.jp/
URL for ITbM Homepage: http://www.itbm.nagoya-u.ac.jp/

Public Relations Contact
Dr. Ayako Miyazaki
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL: +81-52-789-4999 FAX: +81-52-789-3240
E-mail: press@itbm.nagoya-u.ac.jp

Nagoya University Public Relations Office
TEL: +81-52-789-2016 FAX: +81-52-788-6272
E-mail: kouho@adm.nagoya-u.ac.jp

Ayako Miyazaki | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: Nagoya amino aromatic bioactive catalyst compounds ligands materials reaction

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>