Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel “Kabuto-like” nickel catalyst forms bioactive frameworks from low-cost phenol derivatives

28.05.2014

Researchers at ITbM developed a new nickel catalyst with a “Kabuto-like” structure that catalyzed the cross-coupling reaction between carbonyl compounds and readily available phenol derivatives, to form α-arylketones, which are found in many biologically active compounds.

Researchers at ITbM, Nagoya University developed a new nickel catalyst with a “Kabuto-like” structure that was found to catalyze the cross-coupling reaction between carbonyl compounds and readily available phenol derivatives, to form α-arylketones, which are found in many biologically active compounds (Kabuto = a helmet worn by Japanese samurai).


Framework for pharmaceuticals and organic materials

Copyright : ITbM, Nagoya University


Structural optimization of nickel catalyst

Copyright : ITbM, Nagoya University


Bio-active compounds containing a carbonyl aryl structure

Nagoya, Japan – Professors Kenichiro Itami and Junichiro Yamaguchi of the Institute of Transformative Bio-Molecules (WPI-ITbM) and graduate students Ryosuke Takise and Kei Muto of Nagoya University have succeeded in developing a novel nickel catalyst to catalyze the cross-coupling reaction between carbonyl compounds and phenol derivatives.

Phenol derivatives are known to be readily available starting materials, and this reaction has enabled the facile generation of α-arylketone compounds (aryl = aromatic ring; ketone = a carbonyl (C=O functionality with a carbon oxygen double bond) bonded to two other carbon atoms), which constitute the framework of many pharmaceuticals and organic materials.

The study published online on May 20, 2014 in Angewandte Chemie International Edition, is expected to become an important tool in synthesizing biologically active molecules and a range of versatile organic materials containing the α-arylketone framework.

Cross-coupling reactions catalyzed by transition metals enables direct formation of carbon-carbon bonds, which is widely utilized in the formation of a vast number of organic frameworks. This strategy that won the 2010 Nobel Prize in Chemistry extends to α-arylation reactions, which allows incorporation of aromatic rings into carbonyl compounds through carbon-carbon bond formation, mainly using palladium as a catalyst. Many organic molecules such as amino acids contain carbonyl groups.

Thus, α-arylation, which links carbonyl compounds to aromatic rings present in an array of organic molecules, has been used as one of the main reactions to create the organic backbone of many pharmaceuticals and organic materials. Professors Itami and Yamaguchi along with co-workers have been working to develop a new economical catalyst to conduct α-arylation reactions using readily available phenol derivatives as starting materials. This reaction system is envisaged to lead to the facile production of α-arylketones on an industrial scale.

Conventional methods for α-arylation have used palladium as a metal catalyst. “Since 2009, we have been looking at the potential of nickel as a cross-coupling catalyst, which is a more economical catalyst relative to palladium”, says Professor Yamaguchi, one of the leaders of this research, “through our endeavors to develop improved conditions, we have found that phenol derivatives can act as readily available aryl coupling partners”, he describes. Aryl substrates have mainly utilized aryl halides, which are halogenated compounds resulting in toxic wastes. Phenol derivatives on the other hand are usually less toxic and are more readily available compared to aryl halides.

Itami and his group have been working on the development of new generation cross-coupling methods using nickel as a catalyst. They have already reported various cross-coupling reactions including those between aromatic compounds and phenol derivatives, C-H coupling reactions using esters along with reactions linking aromatic rings and alkenes. These pioneering studies have been accomplished by enhancing the reactivity of nickel through tuning of various ligands. One of the effective ligands discovered in 2011 is the dcype (1,2-bisdicyclohexylphosphinoethane) ligand, which is used with nickel to activate phenol derivatives. However, the nickel(dcype) catalyst was insufficient to initiate the cross-coupling between carbonyl compounds and phenol derivatives.

“We have screened various ligands and found that dcypt (1,2-bisdicyclohexylphosphinothiophene), which bears a thiophene (a 5-membered heterocycle containing sulfur) unit, acts as an effective air-stable ligand to improve the reactivity of nickel and bring about this reaction in high yield. Moreover, we were able to use a weak base to carry out this reaction, which improves the substrate scope of this reaction”, explains graduate students Takise and Muto who carried out the experiments.

Development of this new nickel catalyst has enabled the creation of a variety of α-arylketone compounds, including an estrone derivative and an amino acid tyrosine derivative, both bearing the phenol moiety. Professor Itami elaborates, “Many natural products and bioactive compounds contain the α-arylketone framework. Our relatively low-cost nickel-dcypt catalyst has exhibited high activity to couple readily available phenol derivatives in high yield. This system has the potential to be applicable in the synthesis of molecules that can control biological systems of plants and animals, which is one of the main research themes running in our new institute (ITbM).”

This article “Nickel-Catalyzed α-Arylation of Ketones with Phenol Derivatives” by Ryosuke Takise, Kei Muto, Junichiro Yamaguchi and Kenichiro Itami is published online on May 20, 2014 in Angewandte Chemie International Edition.
DOI: 10.1002/anie.201403823

About WPI-ITbM (http://www.itbm.nagoya-u.ac.jp/)
The World Premier International Research Center Initiative (WPI) for the Institute of Transformative Bio-Molecules (ITbM) at Nagoya University in Japan is committed to advance the integration of synthetic chemistry, plant/animal biology and theoretical science, all of which are traditionally strong fields in the university. As part of the Japanese science ministry’s MEXT program, the ITbM aims to develop transformative bio-molecules, innovative functional molecules capable of bringing about fundamental change to biological science and technology. Research at the ITbM is carried out in a “Mix-Lab” style, where international young researchers from multidisciplinary fields work together side-by-side in the same lab. Through these endeavors, the ITbM will create “transformative bio-molecules” that will dramatically change the way of research in chemistry, biology and other related fields to solve urgent problems, such as environmental issues, food production and medical technology that have a significant impact on the society.

Author Contact
Professor Kenichiro Itami
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL/FAX: +81-52-788-6098
E-mail: itami@chem.nagoya-u.ac.jp
URL for Group Homepage: http://synth.chem.nagoya-u.ac.jp/
URL for ITbM Homepage: http://www.itbm.nagoya-u.ac.jp/

Public Relations Contact
Dr. Ayako Miyazaki
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL: +81-52-789-4999 FAX: +81-52-789-3240
E-mail: press@itbm.nagoya-u.ac.jp

Nagoya University Public Relations Office
TEL: +81-52-789-2016 FAX: +81-52-788-6272
E-mail: kouho@adm.nagoya-u.ac.jp

Ayako Miyazaki | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: Nagoya amino aromatic bioactive catalyst compounds ligands materials reaction

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>