Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new technique isolates neuronal activity during memory consolidation

22.06.2017

The study helps in understanding the mechanisms underlying memory formation

A team, led by researchers from the Cajal Institute (Madrid) belonging to the Spanish National Research Council (CSIC), have discovered some basic processes underlying memory consolidation in collaboration with colleagues at the National Hospital for Paraplegics in Toledo (Spain) and the University of Szeged (Hungary). The work, which is published in Neuron, identifies some of the electrical events responsible for specific neuronal activity in the hippocampus: a region of the brain with fundamental roles in episodic memory.


This is the hippocampus neuron (in yellow) isolated during memory consolidation.

Credit: INSTITUTO CAJAL/CSIC

In the study, highlighted at the front cover of the journal, researchers used machine learning to study brain electrical activity during memory reactivation. "Using artificial neural networks, we have been able to identify electrical fotprints associated to events with similar informational content, presumably encoding the same memory trace. Using sophisticated experimental techniques we have succeeded in isolating the activity of individual neurons during these 'memories'" explains Liset Menéndez de la Prida, the Cajal Institute researcher who lead the work.

As the researchers observed in their study, activity of hippocampal cells is precisely modulated during memory trace reactivation. "We have seen that most hippocampal cells acutely respond to 'excitation' and 'inhibition' as a kind of cellular yin-yang, in such a way that the participation of individual neurons of memory traces is extremely selective," explains Manuel Valero, the first author of the paper.

"Only those hippocampal neurons carrying information about a memory to be reactivated would receive more 'excitation' than 'inhibition' to be biased for a particular memory trace. This mechanism endows the hippocampus with the ability to reactivate individual memories without merging information."

In addition, researchers show that an imbalance between 'excitation' and 'inhibition' -characteristic of some brain diseases such as epilepsy- could be catastrophic for memories. "In epilepsy, we see a link between this mechanism and memory deficits. Our data suggest that alterations of excitation-inhibition balance not only contributes to epileptic activity, but also to the collapse of individual memory traces during consolidation, like an indissoluble mixture," explains Menéndez de la Prida.

The hippocampus, vital to generating memory

As researchers point out, the function of hippocampus in memory was unveiled by the famous patient HM. "After he underwent bilateral surgical resection of both hippocampi for treating his epilepsy, he was unable to form new episodic memories."

Menéndez de la Prida explains that with the advancement of neuroscience, it has become increasingly clear that the hippocampus may play a dual role in memory formation. "First, it represents information concerning the time and place where you are at this moment, through sequences of neuronal activity that signal your location in the room and some other temporal contingencies"

Valero adds, "Once this information is collected, it must be transformed it into a long-term memory. This is carried out by the hippocampus through a process called consolidation. During consolidation, neuronal sequences already activated during experience are replayed several times at high speed. It is a process which expends a great deal of energy to leave an electrical footprint". That footprint seems now to be more easily detected in the apparently noisy brain activity.

Media Contact

abel.grau@csic.es
abel.grau@csic.es
0034-915-681-476

 @CSIC

http://www.csic.es 

abel.grau@csic.es | EurekAlert!

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>