Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new single-molecule tool to observe enzymes at work

29.09.2015

A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins. Their approach provides a new platform to view and record these nanoscale interactions in real time. As they report Sept. 28 in Nature Biotechnology, this tool should provide fast and reliable characterization of the different mechanisms cellular proteins use to bind to DNA strands -- information that could shed new light on the atomic-scale interactions within our cells and help design new drug therapies against pathogens by targeting enzymes that interact with DNA.


This is an illustration of a nanopore derived from a genetically modified bacterial membrane channel with DNA passing through it.

Credit: Ian Derrington, University of Washington

"There are other single-molecule tools around, but our new tool is far more sensitive," said senior author and UW physics professor Jens Gundlach. "We can really pick up atomic-scale movements that a protein imparts onto DNA."

As can happen in the scientific process, they developed this tool -- the single-molecule picometer-resolution nanopore tweezers, or SPRNT -- while working on a related project.

The UW team has been exploring nanopore technology to read DNA sequences quickly. Our genes are long stretches of DNA molecules, which are made up of combinations of four chemical DNA "letters." In their approach, Gundlach and his team measure an electrical current through a biological pore called MspA, which is embedded within a modified cell membrane. As DNA passes through a tiny opening in the pore -- an opening that is just 0.00000012 centimeters wide, or 1/10,000th the width of a human hair -- the current shifts based on the sequence of DNA letters. They use these changes in current to infer DNA sequences.

Gundlach and his team, in the process of investigating nanopore sequencing, tried out a variety of molecular motors to move DNA through the pore. They discovered that their experimental setup was sensitive enough to observe motions much smaller than the distance between adjacent letters on the DNA. As they report in their paper, SPRNT is more than seven times more sensitive than existing techniques to measure interactions between DNA and proteins.

"Generally, most existing techniques to look at single-molecule movements -- such as optical tweezers -- have a resolution, at best, of about 300 picometers," said Gundlach. "With SPRNT, we can have 40 picometer resolution."

For reference, 40 picometers are 0.000000004 centimeters, or about 0.0000000016 inches.

"We realized we can detect minute differences in the position of the DNA in the pore," said UW physics postdoctoral researcher Andrew Laszlo, a co-author on the paper. "We could pick up differences in how the proteins were binding to DNA and moving it through the pore."

These differences account for the unique role each cellular protein plays as it interacts with DNA. Cells have proteins to copy DNA, "read" DNA to express genes and repair DNA when it is damaged. There are cellular proteins that unwind DNA, while others bunch DNA tightly together.

Biologists have long recognized that proteins have different structures to perform these roles, but the physical motion of proteins as they work on DNA has been difficult to detect directly.

"When you have the kind of resolution that SPRNT offers, you can start to pick apart the minute steps these proteins take," said Laszlo.

Gundlach and his team show that SPRNT is sensitive enough to differentiate between the mechanisms that two cellular proteins use to pass DNA through the nanopore opening. One protein, which normally copies DNA, moves along the DNA one letter at a time as it guides DNA through the pore. The second protein, which normally unwinds DNA, instead takes two steps along each DNA letter, which they could pick up by tracking minute changes in the current, according to co-author and UW physics doctoral student Jonathan Craig. They even discovered that these two steps involve sequential chemical processes that the protein uses to walk along DNA.

"You can really see the underlying mechanisms, and that has a ton of implications -- from understanding how life works to drug design," said Laszlo.

Gundlach believes this tool may open a new window for understanding how cellular proteins process DNA, which could help genetically engineer proteins to perform novel jobs. These fine details may also help scientists understand how mutations in proteins can lead to disease or find protein properties that would be ideal targets for drug therapies.

"For example, viral genes code for their own proteins that process their DNA," said Gundlach. "If we can use SPRNT to screen for drugs that specifically disrupt the functioning of these proteins, it may be possible to interfere with viruses."

###

Other UW authors on the paper include lead author Ian Derrington, a postdoctoral researcher in physics, and Brian Ross, Henry Brinkerhoff, Ian Nova, Kenji Doering and Benjamin Tickman. Co-authors at Illumina are Kevin Gunderson, Eric Stava, Mostafa Ronaghi and Jeffrey Mandell. Gundlach's laboratory received funding for this project from the National Institutes of Health's $1,000 Genome Project, grant number R01HG005115.

For more information, contact Gundlach at 206-543-8774 or gundlach@uw.edu

Media Contact

James Urton
jurton@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

James Urton | EurekAlert!

Further reports about: DNA DNA sequences cellular proteins drug therapies enzymes genes interactions nanopore physics proteins steps

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>