Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new sensor to detect physiological levels of nitrate and nitrite

11.12.2015

Researchers in Japan have created a new technique for visualizing the dynamics of nitrate (NO3-) and nitrite (NO2−), both markers of nitric oxide in a cell.

A team led by Professor Takafumi Uchida has created a new technique for visualizing the dynamics of nitrate (NO3-) and nitrite (NO2−), both markers of nitric oxide in a cell. Nitric oxide is a critical second messenger in the body, playing roles in vascular homeostasis, neurotransmission and host defense.


Copyright : Tohoku University


sNOOOpy in a human cancer line, HeLa cell. NO3− concentration increasing at intervals.

Copyright : Tohoku University

The new technology is called sNOOOpy which stands for "sensor for NO3-/NO2− in physiology." sNOOOpy is a genetically encoded intermolecular fluorescence resonance energy transfer (FRET)-based indicator that senses levels of nitrate and nitrite. sNOOOpy utilizes the NO3-/NO2--responsive two-component system of NasS and NasT system in the root nodule bacterium Bradyhizobium japonicum.

The researchers demonstrated with in vitro and cell culture studies that sNOOOpy can monitor intracellular levels in the micromolar range of nitrate and nitrite in real time. The authors say, "sNOOOpy is simple and potentially applicable to a wide variety of living cells. It is expected to provide insights into NO3−/NO2− dynamics in various organisms, including plants and animals." They also believe sNOOOpy will be useful for discovering new drugs and agricultural research.

This research was originally published in the Journal of Biological Chemistry © the American Society for Biochemistry and Molecular Biology.

Publication Details :

Authors:
Masafumi Hidaka†, Aina Gotoh†, Taiki Shimizu, Kiwamu Minamisawa, Hiromi Imamura and Takafumi Uchida1 († equal contribution) Admission is free with no reservation needed.
Please feel free to come in and out during the performance.
Bring your own snacks.

Title:
Visualization of NO3−/NO2− Dynamics in Living cells by Fluorescence Resonance Energy Transfer (FRET) Imaging Employing a Rhizobial Two-Component Regulatory System.
Journal: Journal of Biological Chemistry (paper of the week)
DOI: jbc.M115.687632

Contact:
Takafumi Uchida


Associated links
Original article from Tohoku University
Watch the video from Tohoku University here

Ngaroma Riley | Research SEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>