Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new role for zebrafish: Larger scale gene function studies

08.06.2015

A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans, according to scientists at the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health (NIH).

In a study posted online on June 5, 2015, and to be published in the July 2015 issue of Genome Research, the researchers reported that the gene-editing technology known as CRISPR/Cas9 is six times more effective than other techniques at homing in on target genes and inserting or deleting specific sequences.


NHGRI scientists are homing in on specific genes in zebrafish to help them better understand the function of genes in people.

Credit: Darryl Leja, NHGRI

The study also demonstrated that the CRISPR/Cas9 method can be used in a "multiplexed" fashion - that is, targeting and mutating multiple genes at the same time to determine their functions.

"It was shown about a year ago that CRISPR can knock out a gene quickly," said Shawn Burgess, Ph.D., a senior investigator with NHGRI's Translational and Functional Genomics Branch and head of the Developmental Genomics Section.

"What we have done is to establish an entire pipeline for knocking out many genes and testing their function quickly in a vertebrate model." Researchers often try to determine the role of a gene by knocking it out - turning it off or removing it - and watching the potential effects on an organism lacking it.

Such larger scale - termed "high-throughput" - gene targeting in an animal model could be particularly useful for human genomic research. Only 10 to 20 percent of recognized human genes have been subjected to such rigorous testing, Dr. Burgess said. The functions of many other genes have been inferred based on analyzing proteins or have been identified as possible disease genes, but the functions of those genes have not been confirmed by knocking them out in animal models and seeing what happens.

"This is a way to do that on a more cost-efficient and large scale," Dr. Burgess said.

"The study of zebrafish has already led to advances in our understanding of cancer and other human diseases," said NHGRI Director Eric Green, M.D., Ph.D. "We anticipate that the techniques developed by NHGRI researchers will accelerate understanding the biological function of specific genes and the role they play in human genetic diseases."

The CRISPR/Cas9 method of gene editing is one of the two essential components in the NHGRI team's high-throughput method. Modeled on a defense mechanism evolved by bacteria against viruses, CRISPR/Cas9 activity was first described in 2012. Since then, its use has spread quickly - in other words, has gone "viral" - in genomic research labs in the United States and abroad.

The acronym CRISPR stands for "clustered, regularly interspaced, short palindromic repeat," referring to a pattern of DNA sequences that appears frequently in bacterial DNA. Scientists believe the CRISPR sequences reflect evolutionary responses to past viral attacks.

The Cas9 protein is a nuclease, an enzyme that snips a stretch of DNA in two places, in effect cutting out a piece. Bound together, CRISPR/Cas9 becomes a powerful research tool that permits researchers to target and delete a particular sequence or to insert a new sequence into the DNA of animal-model embryos.

The other essential component of the NHGRI team's method is the zebrafish (Danio rerio). The zebrafish and the mouse are the most commonly studied vertebrate laboratory animals whose genomes have been completely sequenced. The zebrafish is better suited to larger scale gene editing because about 70 percent of zebrafish genes appear to have human counterparts and the fish are far less costly to maintain than are mice. They multiply astonishingly quickly; a female may produce as many as 200 eggs at one time. And the embryos are fertilized externally and are transparent, making them readily accessible to researchers.

To demonstrate the feasibility of high throughput editing, the researchers targeted 162 locations in 83 zebrafish genes - about 50 of which are similar to human genes involved in deafness. (Hearing is one of the other interests of Dr. Burgess's lab.) This produced mutations in 82 of the 83 genes.

In screening embryos by fluorescent polymerase chain reaction (a technology that allows researchers to produce millions of copies of a specific DNA sequence) and high-throughput DNA sequencing, the researchers determined that overall, mutations were passed on to the next generation in 28 percent of cases. The transmission rate was higher for some genes than for others, but in most cases, screening offspring from parent fish should be enough to spot most mutations, the researchers reported.

The results demonstrated that using the CRISPR/Cas9 technique in zebrafish will make it possible to both generate mutants for all genes in the zebrafish genome and carry out "large-scale phenotyping," they noted in the Genome Research paper.

The CRISPR/Cas9 methodology works in mice, too, but it is more costly and takes far longer. Although mice actually reach sexual maturity earlier than zebrafish, they produce far fewer offspring.

Ultimately, Dr. Burgess hopes that his lab will use the new method to knock out about 10 percent of the zebrafish's roughly 25,000 genes, and he would like to see an even broader effort. "We've shown that with relatively moderate resources, you can analyze hundreds of genes," Dr. Burgess said. "On the scale of big science, you could target every gene in the genome with what would be a relatively modest scientific investment in the low tens of millions of dollars."

###

Coauthors of the Genome Research paper with Dr. Burgess were: Gaurav Varshney, Ph.D., Wuhong Pei, Ph.D., Matthew LaFave, Ph.D., Lisha Xu, M.S., Viviana Gallardo Mendieta, Ph.D., Blake Carrington, M.S., Kevin Bishop, M.S, Mary Pat Jones, M.S, Ursula Harper, M.S, and Raman Sood, Ph.D, all of NHGRI; Mingyu Li , Ph.D, and Wenbiao Chen, Ph.D, both of Vanderbilt University School of Medicine in Nashville; Sunny Huang, B.S, formerly of NHGRI, now of the University of Iowa in Iowa City; Jennifer Idol, M.S., formerly of NHGRI, now of the Jackson Laboratory in Bar Harbor, Maine; and Johan Ledin, Ph.D., of Uppsala University in Uppsala, Sweden.

NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at its website, http://www.genome.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 institutes and centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

National Human Genome Research Institute

Contact:

Steven Benowitz
NHGRI Communications
(301) 402-0911 Steven.Benowitz@nih.gov

Steven Benowitz | EurekAlert!

Further reports about: CRISPR DNA Genome Research Human Genome Research NHGRI NIH Zebrafish diseases gene function genes

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>