Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new role for zebrafish: Larger scale gene function studies

08.06.2015

A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans, according to scientists at the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health (NIH).

In a study posted online on June 5, 2015, and to be published in the July 2015 issue of Genome Research, the researchers reported that the gene-editing technology known as CRISPR/Cas9 is six times more effective than other techniques at homing in on target genes and inserting or deleting specific sequences.


NHGRI scientists are homing in on specific genes in zebrafish to help them better understand the function of genes in people.

Credit: Darryl Leja, NHGRI

The study also demonstrated that the CRISPR/Cas9 method can be used in a "multiplexed" fashion - that is, targeting and mutating multiple genes at the same time to determine their functions.

"It was shown about a year ago that CRISPR can knock out a gene quickly," said Shawn Burgess, Ph.D., a senior investigator with NHGRI's Translational and Functional Genomics Branch and head of the Developmental Genomics Section.

"What we have done is to establish an entire pipeline for knocking out many genes and testing their function quickly in a vertebrate model." Researchers often try to determine the role of a gene by knocking it out - turning it off or removing it - and watching the potential effects on an organism lacking it.

Such larger scale - termed "high-throughput" - gene targeting in an animal model could be particularly useful for human genomic research. Only 10 to 20 percent of recognized human genes have been subjected to such rigorous testing, Dr. Burgess said. The functions of many other genes have been inferred based on analyzing proteins or have been identified as possible disease genes, but the functions of those genes have not been confirmed by knocking them out in animal models and seeing what happens.

"This is a way to do that on a more cost-efficient and large scale," Dr. Burgess said.

"The study of zebrafish has already led to advances in our understanding of cancer and other human diseases," said NHGRI Director Eric Green, M.D., Ph.D. "We anticipate that the techniques developed by NHGRI researchers will accelerate understanding the biological function of specific genes and the role they play in human genetic diseases."

The CRISPR/Cas9 method of gene editing is one of the two essential components in the NHGRI team's high-throughput method. Modeled on a defense mechanism evolved by bacteria against viruses, CRISPR/Cas9 activity was first described in 2012. Since then, its use has spread quickly - in other words, has gone "viral" - in genomic research labs in the United States and abroad.

The acronym CRISPR stands for "clustered, regularly interspaced, short palindromic repeat," referring to a pattern of DNA sequences that appears frequently in bacterial DNA. Scientists believe the CRISPR sequences reflect evolutionary responses to past viral attacks.

The Cas9 protein is a nuclease, an enzyme that snips a stretch of DNA in two places, in effect cutting out a piece. Bound together, CRISPR/Cas9 becomes a powerful research tool that permits researchers to target and delete a particular sequence or to insert a new sequence into the DNA of animal-model embryos.

The other essential component of the NHGRI team's method is the zebrafish (Danio rerio). The zebrafish and the mouse are the most commonly studied vertebrate laboratory animals whose genomes have been completely sequenced. The zebrafish is better suited to larger scale gene editing because about 70 percent of zebrafish genes appear to have human counterparts and the fish are far less costly to maintain than are mice. They multiply astonishingly quickly; a female may produce as many as 200 eggs at one time. And the embryos are fertilized externally and are transparent, making them readily accessible to researchers.

To demonstrate the feasibility of high throughput editing, the researchers targeted 162 locations in 83 zebrafish genes - about 50 of which are similar to human genes involved in deafness. (Hearing is one of the other interests of Dr. Burgess's lab.) This produced mutations in 82 of the 83 genes.

In screening embryos by fluorescent polymerase chain reaction (a technology that allows researchers to produce millions of copies of a specific DNA sequence) and high-throughput DNA sequencing, the researchers determined that overall, mutations were passed on to the next generation in 28 percent of cases. The transmission rate was higher for some genes than for others, but in most cases, screening offspring from parent fish should be enough to spot most mutations, the researchers reported.

The results demonstrated that using the CRISPR/Cas9 technique in zebrafish will make it possible to both generate mutants for all genes in the zebrafish genome and carry out "large-scale phenotyping," they noted in the Genome Research paper.

The CRISPR/Cas9 methodology works in mice, too, but it is more costly and takes far longer. Although mice actually reach sexual maturity earlier than zebrafish, they produce far fewer offspring.

Ultimately, Dr. Burgess hopes that his lab will use the new method to knock out about 10 percent of the zebrafish's roughly 25,000 genes, and he would like to see an even broader effort. "We've shown that with relatively moderate resources, you can analyze hundreds of genes," Dr. Burgess said. "On the scale of big science, you could target every gene in the genome with what would be a relatively modest scientific investment in the low tens of millions of dollars."

###

Coauthors of the Genome Research paper with Dr. Burgess were: Gaurav Varshney, Ph.D., Wuhong Pei, Ph.D., Matthew LaFave, Ph.D., Lisha Xu, M.S., Viviana Gallardo Mendieta, Ph.D., Blake Carrington, M.S., Kevin Bishop, M.S, Mary Pat Jones, M.S, Ursula Harper, M.S, and Raman Sood, Ph.D, all of NHGRI; Mingyu Li , Ph.D, and Wenbiao Chen, Ph.D, both of Vanderbilt University School of Medicine in Nashville; Sunny Huang, B.S, formerly of NHGRI, now of the University of Iowa in Iowa City; Jennifer Idol, M.S., formerly of NHGRI, now of the Jackson Laboratory in Bar Harbor, Maine; and Johan Ledin, Ph.D., of Uppsala University in Uppsala, Sweden.

NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at its website, http://www.genome.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 institutes and centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

National Human Genome Research Institute

Contact:

Steven Benowitz
NHGRI Communications
(301) 402-0911 Steven.Benowitz@nih.gov

Steven Benowitz | EurekAlert!

Further reports about: CRISPR DNA Genome Research Human Genome Research NHGRI NIH Zebrafish diseases gene function genes

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>