Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new role for vitamin B6 in plants

09.02.2016

Vitamin B6, which exists in different natural forms called vitamers, is essential for all living organisms, as it participates in numerous aspects of cells’ everyday life. Researchers from the University of Geneva, Switzerland, and collaborators have discovered an unexpected role for this micronutrient, in relation to nitrogen metabolism. Described in the journal The Plant Cell, the results indicate that one of the vitamers informs the plant of its content in ammonium, a basic nitrogen compound needed e.g. for the biosynthesis of proteins. In the future, vitamin B6 could be used to ascertain the nitrogen status of plants and eventually prevent the overuse of nitrogen-containing fertilizers.

Essential for all living organisms, Vitamin B6, which exists in six different forms called vitamers, is produced by plants, bacteria, and fungi, but not by animals. However, it is not known why organisms have several vitamers and if their balance (homeostasis) is of importance. In plants, the various vitamers can be produced via different specific pathways.


Young Arabidopsis plants: wild (top) and with PDX3 deficiency (bottom).

Teresa Fitzpatrick, UNIGE

“We study these pathways to determine their contribution to cellular vitamin B6 homeostasis and to growth and development”, explains Teresa Fitzpatrick, professor at the Department of Botany and Plant Biology of the Faculty of Sciences of UNIGE, who led the study.

In collaboration with the Max Planck Institute of Molecular Plant Physiology and the University of Düsseldorf (Germany), the researchers examined a version of the model plant Arabidopsis thaliana (thale cress), which is defective in the PDX3 enzyme. Surprisingly, these plants displayed strongly impaired growth and development.

“PDX3-defective plants cannot transform a vitamer called PMP, therefore the latter accumulates within the cell. While we hypothesized that the observed anomalies may be due to the high levels of PMP, we had no idea of the underlying mechanism and questioned its precise contribution”, says Maite Colinas, member of the Geneva team and first author of the study.

The answer came from an unexpected discovery: the observed growth anomalies of the mutants were completely abrogated when the plants were supplemented with ammonium. “In most natural soils the predominant nitrogen source for plants is nitrate, as they usually contain little ammonium. Plants must therefore import the former and convert it to ammonium, which can then be used for the biosynthesis of nitrogenous compounds including proteins to promote plant growth”, notes Teresa Fitzpatrick.

It turns out from the scientists’ investigation that the high levels of PMP in the PDX3-defective plants interfere with the conversion of nitrate into ammonium, resulting in an ammonium deficiency that is responsible for the impaired growth and development.

As the connection between nitrogen and vitamin B6 metabolism had never been made, the biologists further examined the potential interactions between these two processes in natural wild-type plants. They indeed observed a considerable accumulation of the PMP vitamer in plants supplemented with ammonium. “When the plant contains enough ammonium for its needs, further production from nitrate is prevented, thus limiting energy waste and potential toxicity that can happen if too much is made. The level of PMP probably informs the plant about its ammonium state”, reports Maite Colinas.

While scientists knew that plants acquired nitrogen from nitrate or ammonium to meet their needs, they were uncertain of how the plant monitored the level or proportion of these compounds. Here, the researchers have found an unanticipated player in this process: the vitamer PMP. The group is currently investigating whether PMP regulates nitrogen metabolism directly or indirectly, via the action of other compounds. In the future, vitamin B6 could be used to ascertain the nitrogen status of plants and eventually prevent the overuse of nitrogen-containing fertilizers that are currently having detrimental effects on the environment.

Weitere Informationen:

http://www.unige.ch/

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie
Further information:
http://www.mpimp-golm.mpg.de

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>