Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new molecule for high-resolution cell imaging


Like our own bodies, cells have their own skeletons called 'cytoskeletons' and are made of proteins instead of bones.

These network-like structures maintain the cell's shape, provide mechanical support, and are involved in critical processes of the cell's lifecycle. The cytoskeleton is an object of intense scientific and medical research, which often requires being able to observe it directly in cells.

Ideally, this would involve highly-fluorescent molecules that can bind cytoskeletal proteins with high specificity without being toxic to the cell. Publishing in Nature Methods, EPFL scientists have exploited the properties of a new fluorescent molecule, also developed at EPFL, to generate two powerful probes for the imaging of the cytoskeleton with unprecedented resolution. These probes pave the way for the easier and higher quality imaging of cells, offering many scientific and medical advantages.

The cytoskeleton is a large structure inside cells that provides them with mechanical support, keeps their three-dimensional shape and internal organization, and enables them to move and divide. It consists of three major sub-structures inside the cell, which are made up of long, filamentous proteins: tubulin and actin.

Current techniques for observing the cytoskeleton can be difficult to get into living cells, can be toxic, and are usually limited in resolution and duration, since the signal wears off over time. A common technique is fluorescence microscopy, where fluorescent molecules ('probes') are attached to cell structures and then 'lit up' against a dark background.

The team of Kai Johnsson at EPFL has developed novel fluorescent probes that can easily enter live cells, are non-toxic, have long-lasting signals, and most importantly, offer unprecedented image resolution. In 2013, the researchers developed a fluorescent molecule called silicon-rhodamine (SiR), which switches 'on' only when it binds to the charged surface of a protein like the ones found on the cytoskeleton. When SiR switches 'on', it emits light at far-red wavelengths.

The challenge was getting SiR to bind specifically to the cytoskeleton's proteins, actin and tubulin. To achieve this, the scientists fused SiR molecules with compounds that bind tubulin or actin. The resulting hybrid molecules consist of a SiR molecule, which provides the fluorescent signal, and a molecule of a natural compound that can bind the target protein. One such compound was docetaxel, an anticancer drug that binds tubulin, and the other jasplakinolide, which specifically binds the cytoskeletal form of actin. Both compounds, which are used here in very low, non-toxic concentrations, can easily pass through the cell's membrane and into the cell itself.

The probes, named SiR-tubulin and SiR-actin, were used to visualize the dynamics of the cytoskeleton in human skin cells. Because the light signal of the probes is emitted in the far-red spectrum, it is easy to isolate from background noise, which generates images of unprecedented resolution when used with a technique called super-resolution microscopy.

An additional advantage is the practicality of the probes. "You just add them directly into your cell culture, and they are taken up by the cells", says Kai Johnsson. The probes also do not require any washing or preparation of the cells before administration or any subsequent washing steps, which greatly helps in maintaining the stability of their environment and their natural biological functions.

The scientists believe that they can extend their work into other types of proteins and tissues. "Cytoskeletal structures are imaged by biologists all the time", says Johnsson. "Up to now, no probes were available that would allow you to get high quality images of microtubules and microfilaments in living cells without some kind of genetic modification. With this work, we provide the biological community with two high-performing, high-contrast fluorogenic probes that emit in the non-phototoxic part of the light spectrum, and can be even used in tissues like whole-blood samples."


This work represents a collaboration between EPFL's Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering (IBI), and the Bioimaging and Optics Platform (BIOP), with the National Centre of Competence in Research (NCCR) in Chemical Biology; the Max-Planck Institutes for Biophysical Chemistry (Göttingen) and of Molecular Physiology (Dortmund); the Friedrich-Schiller-University's Institute of Organic Chemistry (Jena); and the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) (Vienna).


Lukinavičius G, Reymond L, D'Este E, Masharina A, Göttfert F, Ta H, Güther A, Fournier M, Rizzo S, Waldmann H, Blaukopf C, Sommer C, Gerlich DW, Arndt HD, Hell SW, Johnsson K. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nature Methods 25 May 2014. DOI: 10.1038/nmeth.2972

Nik Papageorgiou | Eurek Alert!
Further information:

Further reports about: EPFL Ecole Molecular Polytechnique actin cytoskeleton fluorescent proteins spectrum structures

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>