Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new 'king' -- New, gigantic, ancient armored fish discovered

12.10.2016

We've all seen "Jurassic Park." We all know T. rex.

But what about B. rex?

Thanks to a team of scientists from the Academy of Natural Sciences of Drexel University, Delaware Valley University, Stanford University and the University of Chicago, a new rex -- Latin for "king" -- is in the mix, with the discovery of Bothriolepis rex, a new, giant in the group Antiarchi, which are extinct fish with external, bony armored plates covering their head, shoulders and front fins.


Fossil bones from the skull of Bothriolepis rex and a line drawing of the head viewed from above. The large, thick bones create an armor with a single opening for the eyes. The mouth is on the lower surface of the skull, indicating a bottom-feeding lifestyle.

Photo by Valentina Garcia, drawing by Jason Downs

The researchers identified the new fish from fossils first discovered in 2000 near Okse Bay on Ellesmere Island in Nunavut, Canada. The site, within the Nordstrand Point Formation, features 370 million-year-old fossils from the Devonian Period, a time predating most dinosaurs by hundreds of millions of years.

"Bothriolepis rex extends the range of known body sizes for the group Antiarchi," explained Jason Downs, PhD, a research associate at the Academy and assistant professor at Delaware Valley University. "The large body size and the thick, dense armor present a unique opportunity to address questions about the lifestyle of this unusual group of armored swimmers."

Downs was the lead author on the paper officially describing the fish, which was co-authored by Ted Daeschler, PhD, vice president of the Academy and a professor in the Department of Biodiversity, Earth and Environmental Science in Drexel's College of Arts and Sciences. Valentina Garcia, of Stanford, and Neil Shubin, of the University of Chicago, also served as co-authors on the paper published in the Journal of Vertebrate Paleontology.

B. rex's size eclipses the previous king of the antiarchs, Bothriolepis maxima. B. rex's body length is estimated at 1.7 meters -- roughly five-and-a-half feet long, about 30 percent longer than B. maxima's estimated length.

The large, thick plates on B. rex's head were found alongside fossils of other species with thick head plates, suggesting that these were necessary to survive the "stabbing bites of large sarcopterygians," which were predatory fish from the same time period.

Despite that armor, the evidence doesn't point to B. rex sharing T. rex's ferocity.

"Bothriolepis is a group of bottom-dwelling armored aquatic vertebrates," Downs said. "The flat bottom and the downward-facing mouth suggest feeding on detritus plant or animal material in the mud or sand. It was not equipped for active predation."

As such, the heavy, compact bones could have also solved buoyancy issues for a fish that spent most of its time on the bottom.

One aspect of the fish immediately challenged the researchers' assumptions.

"Skull shape changes with body size in Bothriolepis," Downs said. "Despite the gigantic size of the B. rex, its skull doesn't reflect our expectations for the size. Instead, the skull shape is suggestive of a smaller Bothriolepis."

A finding like this could alter the way scientists understand the size-shape relationships in Bothriolepis, according to Downs.

Although popular culture tends to think "bigger is better" when it comes to these prehistoric beasts -- which is probably why you're much more familiar with T. rex than Procompsognathus -- it turns out that size may have done B. rex in.

"All antiarchs are extinct by the end of the Devonian Period," Downs said. "We can't know exactly why B. rex went extinct, but large-bodied species are often found to be at a higher risk of extinction than small-bodied ones."

Media Contact

Frank Otto
fmo26@drexel.edu
215-571-4244

 @DrexelNews

http://www.Drexel.edu/ 

Frank Otto | EurekAlert!

Further reports about: armored fish body size fossils gigantic size

More articles from Life Sciences:

nachricht Multifunctional Platform for the Delivery of Gene Therapeutics
22.01.2018 | Angewandte Chemie International Edition

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>