Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new 'king' -- New, gigantic, ancient armored fish discovered

12.10.2016

We've all seen "Jurassic Park." We all know T. rex.

But what about B. rex?

Thanks to a team of scientists from the Academy of Natural Sciences of Drexel University, Delaware Valley University, Stanford University and the University of Chicago, a new rex -- Latin for "king" -- is in the mix, with the discovery of Bothriolepis rex, a new, giant in the group Antiarchi, which are extinct fish with external, bony armored plates covering their head, shoulders and front fins.


Fossil bones from the skull of Bothriolepis rex and a line drawing of the head viewed from above. The large, thick bones create an armor with a single opening for the eyes. The mouth is on the lower surface of the skull, indicating a bottom-feeding lifestyle.

Photo by Valentina Garcia, drawing by Jason Downs

The researchers identified the new fish from fossils first discovered in 2000 near Okse Bay on Ellesmere Island in Nunavut, Canada. The site, within the Nordstrand Point Formation, features 370 million-year-old fossils from the Devonian Period, a time predating most dinosaurs by hundreds of millions of years.

"Bothriolepis rex extends the range of known body sizes for the group Antiarchi," explained Jason Downs, PhD, a research associate at the Academy and assistant professor at Delaware Valley University. "The large body size and the thick, dense armor present a unique opportunity to address questions about the lifestyle of this unusual group of armored swimmers."

Downs was the lead author on the paper officially describing the fish, which was co-authored by Ted Daeschler, PhD, vice president of the Academy and a professor in the Department of Biodiversity, Earth and Environmental Science in Drexel's College of Arts and Sciences. Valentina Garcia, of Stanford, and Neil Shubin, of the University of Chicago, also served as co-authors on the paper published in the Journal of Vertebrate Paleontology.

B. rex's size eclipses the previous king of the antiarchs, Bothriolepis maxima. B. rex's body length is estimated at 1.7 meters -- roughly five-and-a-half feet long, about 30 percent longer than B. maxima's estimated length.

The large, thick plates on B. rex's head were found alongside fossils of other species with thick head plates, suggesting that these were necessary to survive the "stabbing bites of large sarcopterygians," which were predatory fish from the same time period.

Despite that armor, the evidence doesn't point to B. rex sharing T. rex's ferocity.

"Bothriolepis is a group of bottom-dwelling armored aquatic vertebrates," Downs said. "The flat bottom and the downward-facing mouth suggest feeding on detritus plant or animal material in the mud or sand. It was not equipped for active predation."

As such, the heavy, compact bones could have also solved buoyancy issues for a fish that spent most of its time on the bottom.

One aspect of the fish immediately challenged the researchers' assumptions.

"Skull shape changes with body size in Bothriolepis," Downs said. "Despite the gigantic size of the B. rex, its skull doesn't reflect our expectations for the size. Instead, the skull shape is suggestive of a smaller Bothriolepis."

A finding like this could alter the way scientists understand the size-shape relationships in Bothriolepis, according to Downs.

Although popular culture tends to think "bigger is better" when it comes to these prehistoric beasts -- which is probably why you're much more familiar with T. rex than Procompsognathus -- it turns out that size may have done B. rex in.

"All antiarchs are extinct by the end of the Devonian Period," Downs said. "We can't know exactly why B. rex went extinct, but large-bodied species are often found to be at a higher risk of extinction than small-bodied ones."

Media Contact

Frank Otto
fmo26@drexel.edu
215-571-4244

 @DrexelNews

http://www.Drexel.edu/ 

Frank Otto | EurekAlert!

Further reports about: armored fish body size fossils gigantic size

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>