Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new 'king' -- New, gigantic, ancient armored fish discovered

12.10.2016

We've all seen "Jurassic Park." We all know T. rex.

But what about B. rex?

Thanks to a team of scientists from the Academy of Natural Sciences of Drexel University, Delaware Valley University, Stanford University and the University of Chicago, a new rex -- Latin for "king" -- is in the mix, with the discovery of Bothriolepis rex, a new, giant in the group Antiarchi, which are extinct fish with external, bony armored plates covering their head, shoulders and front fins.


Fossil bones from the skull of Bothriolepis rex and a line drawing of the head viewed from above. The large, thick bones create an armor with a single opening for the eyes. The mouth is on the lower surface of the skull, indicating a bottom-feeding lifestyle.

Photo by Valentina Garcia, drawing by Jason Downs

The researchers identified the new fish from fossils first discovered in 2000 near Okse Bay on Ellesmere Island in Nunavut, Canada. The site, within the Nordstrand Point Formation, features 370 million-year-old fossils from the Devonian Period, a time predating most dinosaurs by hundreds of millions of years.

"Bothriolepis rex extends the range of known body sizes for the group Antiarchi," explained Jason Downs, PhD, a research associate at the Academy and assistant professor at Delaware Valley University. "The large body size and the thick, dense armor present a unique opportunity to address questions about the lifestyle of this unusual group of armored swimmers."

Downs was the lead author on the paper officially describing the fish, which was co-authored by Ted Daeschler, PhD, vice president of the Academy and a professor in the Department of Biodiversity, Earth and Environmental Science in Drexel's College of Arts and Sciences. Valentina Garcia, of Stanford, and Neil Shubin, of the University of Chicago, also served as co-authors on the paper published in the Journal of Vertebrate Paleontology.

B. rex's size eclipses the previous king of the antiarchs, Bothriolepis maxima. B. rex's body length is estimated at 1.7 meters -- roughly five-and-a-half feet long, about 30 percent longer than B. maxima's estimated length.

The large, thick plates on B. rex's head were found alongside fossils of other species with thick head plates, suggesting that these were necessary to survive the "stabbing bites of large sarcopterygians," which were predatory fish from the same time period.

Despite that armor, the evidence doesn't point to B. rex sharing T. rex's ferocity.

"Bothriolepis is a group of bottom-dwelling armored aquatic vertebrates," Downs said. "The flat bottom and the downward-facing mouth suggest feeding on detritus plant or animal material in the mud or sand. It was not equipped for active predation."

As such, the heavy, compact bones could have also solved buoyancy issues for a fish that spent most of its time on the bottom.

One aspect of the fish immediately challenged the researchers' assumptions.

"Skull shape changes with body size in Bothriolepis," Downs said. "Despite the gigantic size of the B. rex, its skull doesn't reflect our expectations for the size. Instead, the skull shape is suggestive of a smaller Bothriolepis."

A finding like this could alter the way scientists understand the size-shape relationships in Bothriolepis, according to Downs.

Although popular culture tends to think "bigger is better" when it comes to these prehistoric beasts -- which is probably why you're much more familiar with T. rex than Procompsognathus -- it turns out that size may have done B. rex in.

"All antiarchs are extinct by the end of the Devonian Period," Downs said. "We can't know exactly why B. rex went extinct, but large-bodied species are often found to be at a higher risk of extinction than small-bodied ones."

Media Contact

Frank Otto
fmo26@drexel.edu
215-571-4244

 @DrexelNews

http://www.Drexel.edu/ 

Frank Otto | EurekAlert!

Further reports about: armored fish body size fossils gigantic size

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>