Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Nanographene Hungry for Electrons

14.04.2016

In autumn 2015 the Research Training School on molecular biradicals took up its work at the University of Würzburg. Currently the cooperation between chemists and physicists led to a first result: a publication on a new molecule, which is of interest for organic electronics.

Non-specialists see a dark purple solid that appears to have no specific properties: Experts instead are delighted about a nanographene with a central core composed of 64 carbon atoms, which is characterized by its electron-poor character.


More than one nanometer in diameter is the molecule that chemists from Würzburg have synthesized for the first time. Its tendency to take up electrons makes it interesting for further investigations.

Figure: Sabine Seifert

Sabine Seifert, PhD candidate at the chair of organic chemistry II, realized the synthesis and structural characterization of this molecule under supervision of Professor Frank Würthner. Recently, the journal Angewandte Chemie reported on this work in its international edition.

Capacity for up to four electrons

A pyrene precursor which is extended by four naphthalimide moieties builds up the new molecule bearing 64 sp2-hybridized carbon atoms in its central core. These coplanary arranged atoms generate a flat and two-dimensional system, which rises in dimensionality at its corners where bulky sidechains were introduced. The size of this molecule extends over more than one nanometer – one millionth of a millimeter. Its specificity: “We succeeded to synthesize one of the largest electron-poor molecules,” explains Sabine Seifert. According to the PhD student, only few similar synthetic strategies are established so far. “The synthesis in which ten carbon-carbon bonds are formed in one single chemical operation is unprecedented and may be pioneering for the fabrication of hitherto unknown polycyclic aromatic materials”, adds Professor Frank Würthner.

Electron-poor: As a consequence the new molecule has the tendency to take up additional electrons. Thus, the young junior scientist could show that up to four of them can be hosted by this system which therefore becomes interesting for organic electronics. As an organic semiconductor, it could be responsible for electron transport processes and therefore open access to new applications.

Cooperation within the Research Training School

To discover new synthetic strategies and subsequently determine the structures and properties of newly synthesized moleculesis the purpose of the cooperation of the Research Training School 2112, which was initiated at the University of Würzburg last fall with Professor Ingo Fischer as its speaker (Institute of Physical Chemistry). The focus of this program is on so called biradicals – molecules with two unpaired electrons – to which this new nanographen-symstem closely resembles once it has been charged with “only” two electrons. The generation of tri- and tetra-radicals should also be possible and therefore go beyond the aim of the Research Training School.

“We are studying how far the electrons interact with each other, how the spins behave and whether (bi)-radicaloid states can be generated”, explains Sabine Seifert. Among others, biradicals play an important role in combustion processes or atmospheric chemistry, with oxygen and ozone as well known representatives of such systems . Furthermore, their physical properties could be advantageous for the development of new optoelectronic materials. For this reason, it is the goal of the Research Training School to get an even better understanding of the respective properties and to specifically manipulate the physical and chemical characteristics of biradicals. As part of her PhD thesis, Sabine Seifert worked more than two years in the laboratory to accomplish the synthesis of this nanographene-system. The next step will be to vary the side chains and to elaborate the impact of these variations on the properties of such molecules.

An Electron-Poor C64 Nanographene by Palladium-Catalyzed Cascade C-C Bond Formation: One-Pot Synthesis and Single-Crystal Structure Analysis. Sabine Seifert, Kazutaka Shoyama, David Schmidt, and Frank Würthner. Angewandte Chemie, DOI: 10.1002/ange.201601433

Contact

Prof. Dr. Frank Würthner, Institut für Organische Chemie der Universität Würzburg
T: (0931) 31-85340, wuerthner@chemie.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Reptile vocalization is surprisingly flexible
30.05.2017 | Max-Planck-Institut für Ornithologie

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>