Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A "GPS" for molecules

19.12.2014

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and Theoretical Chemistry of the University of Bonn have now developed a molecular "GPS" with which the whereabouts of metal ions in enzymes can be reliably determined. Such ions play important roles in all corners of metabolism and synthesis for biological products. The "molecular GPS" is now being featured in the journal "Angewandte Chemie" .

There would be no life on our planet without enzymes. These molecules, control and enable biochemical reactions ranging from digestion to the duplication of genetic information. "Enzymes are spatially complex structures which can have multiple folds, sheets and loops", says Prof. Dr. Olav Schiemann from the Institute for Physical and Theoretical Chemistry of the University of Bonn.


A GPS for molecules: Prof. Dr. Olav Schiemann (left) and doctoral student Dinar Abdullin with an image of the enzyme azurine.

(c) Photo: Barbara Frommann/Uni Bonn

In the reaction center of such a "protein knot", which is known as the "active center", is often one or more metal ions. This means that the substance which is to be changed by a chemical reaction attaches to or close to the metal ion. The ion facilitates the breakage or reformation of one or more bonds in the attached substance and the conversion into a new substance arises through the enzyme. Such conversions take place constantly in our stomach, for example, where food is broken down into substances which our body can easily absorb.

Scientists are examining how such essential enzymes work. To do this, they must precisely know how the individual atoms are arranged in these biomolecules. "When we know the whereabouts of the metal ion in an enzyme, we can better understand exactly how the reactions proceed," says Prof. Schiemann. His working group has now determined the position of the active center in an enzyme using a novel method which is reminiscent in principle of the global positioning system (GPS) with which automobile navigation systems work.

Like the maze of traffic during rush hour

"The structure of enzymes is frequently, at first glance, just as confusing as the maze of traffic during rush hour," chuckles the physical chemist from the University of Bonn. Similarly to how an individual car is nearly impossible to make out in a large amount of traffic, the metal ion "hides" in the numerous coils and folds of the enzyme. Nonetheless, the position of the vehicle - and also that of the metal ion - can be reliably determined with GPS. Several satellites orbit our planet and indicate through the transit time of signals the distance to a certain point on the earth, for example, a car. The site where the distance spheres of the various satellites intersect is where the car to be located.

The "satellites" consist of the spin labeled amino acid cysteine

The physical chemists from the University of Bonn proceeded similarly. "Our satellites are spin labels," explains doctoral student Dinar Abdullin. These are small organic molecules which have an unpaired electron and which are stable. The researchers distributed six of these "molecular satellites" in their enzyme model "azurine" - a blue protein with a copper ion in the center. Using computer programs, the scientists first tracked the "orbits" of the tiny satellites in the coils of the enzyme. They then determined the distance between the satellites and the metal ion using a spectroscopic method, namely PELDOR, which acts like a ruler on a molecular level. "Similar to the GPS, we were able to precisely determine the position of the active center in the enzyme from this," says Abdullin.

The tool kit of physical chemistry has now gained an elegant additional method. "We developed the method for basic research but it can also be used to clarify the structure of other enzymes," says Prof. Schiemann. A better understanding of substance conversions at active centers is ultimately also the foundation, for example, for industrial drug manufacturing.

Publication: Abdullin D., Florin N., Hagelueken G. and Schiemann O.: EPR based Approach for the Localization of Paramagnetic Metal Ions in Biomolecules, Angewandte Chemie, DOI: 10.1002/anie.201410396

Media contact information:

Prof. Dr. Olav Schiemann
Institute of Physical and Theoretical
Chemistry of the University of Bonn
Tel. ++49-(0)228-732989
E-Mail: schiemann@pc.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>