Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A "GPS" for molecules

19.12.2014

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and Theoretical Chemistry of the University of Bonn have now developed a molecular "GPS" with which the whereabouts of metal ions in enzymes can be reliably determined. Such ions play important roles in all corners of metabolism and synthesis for biological products. The "molecular GPS" is now being featured in the journal "Angewandte Chemie" .

There would be no life on our planet without enzymes. These molecules, control and enable biochemical reactions ranging from digestion to the duplication of genetic information. "Enzymes are spatially complex structures which can have multiple folds, sheets and loops", says Prof. Dr. Olav Schiemann from the Institute for Physical and Theoretical Chemistry of the University of Bonn.


A GPS for molecules: Prof. Dr. Olav Schiemann (left) and doctoral student Dinar Abdullin with an image of the enzyme azurine.

(c) Photo: Barbara Frommann/Uni Bonn

In the reaction center of such a "protein knot", which is known as the "active center", is often one or more metal ions. This means that the substance which is to be changed by a chemical reaction attaches to or close to the metal ion. The ion facilitates the breakage or reformation of one or more bonds in the attached substance and the conversion into a new substance arises through the enzyme. Such conversions take place constantly in our stomach, for example, where food is broken down into substances which our body can easily absorb.

Scientists are examining how such essential enzymes work. To do this, they must precisely know how the individual atoms are arranged in these biomolecules. "When we know the whereabouts of the metal ion in an enzyme, we can better understand exactly how the reactions proceed," says Prof. Schiemann. His working group has now determined the position of the active center in an enzyme using a novel method which is reminiscent in principle of the global positioning system (GPS) with which automobile navigation systems work.

Like the maze of traffic during rush hour

"The structure of enzymes is frequently, at first glance, just as confusing as the maze of traffic during rush hour," chuckles the physical chemist from the University of Bonn. Similarly to how an individual car is nearly impossible to make out in a large amount of traffic, the metal ion "hides" in the numerous coils and folds of the enzyme. Nonetheless, the position of the vehicle - and also that of the metal ion - can be reliably determined with GPS. Several satellites orbit our planet and indicate through the transit time of signals the distance to a certain point on the earth, for example, a car. The site where the distance spheres of the various satellites intersect is where the car to be located.

The "satellites" consist of the spin labeled amino acid cysteine

The physical chemists from the University of Bonn proceeded similarly. "Our satellites are spin labels," explains doctoral student Dinar Abdullin. These are small organic molecules which have an unpaired electron and which are stable. The researchers distributed six of these "molecular satellites" in their enzyme model "azurine" - a blue protein with a copper ion in the center. Using computer programs, the scientists first tracked the "orbits" of the tiny satellites in the coils of the enzyme. They then determined the distance between the satellites and the metal ion using a spectroscopic method, namely PELDOR, which acts like a ruler on a molecular level. "Similar to the GPS, we were able to precisely determine the position of the active center in the enzyme from this," says Abdullin.

The tool kit of physical chemistry has now gained an elegant additional method. "We developed the method for basic research but it can also be used to clarify the structure of other enzymes," says Prof. Schiemann. A better understanding of substance conversions at active centers is ultimately also the foundation, for example, for industrial drug manufacturing.

Publication: Abdullin D., Florin N., Hagelueken G. and Schiemann O.: EPR based Approach for the Localization of Paramagnetic Metal Ions in Biomolecules, Angewandte Chemie, DOI: 10.1002/anie.201410396

Media contact information:

Prof. Dr. Olav Schiemann
Institute of Physical and Theoretical
Chemistry of the University of Bonn
Tel. ++49-(0)228-732989
E-Mail: schiemann@pc.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>