Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A global standard for the testing of mycoplasma contamination has been developed

17.06.2015

Biological medicinal products such as recombinant proteins, monoclonal antibodies, and many vaccines are produced in cell cultures. Specific detection assays are performed, to make sure that these products are not contaminated with pathogens. Staff members of the Paul-Ehrlich-Institut have taken the lead in developing, on behalf of the WHO, the first internationally recognized reference preparation for tests detecting mycoplasma contamination in cell cultures. The journal “Applied and Environmental Microbiology” reports on this newly developed WHO standard in its online edition of 12 June 2015.
doi:10.1128/AEM.01150-15

Mycoplasma is a genus of very small bacteria that lack a cell wall. Due to their very small size and their flexible shape, these pathogens are able to pass bacteria filters and, for this reason cannot be safely removed by means of such filters during the manufacture of medicinal products. Mycoplasma include species which cause diseases of the respiratory and urogenital tracts in humans.


Mycoplasma-contaminated cell culture

Prof. Dr. Renate Rosengarten, University of Veterinary Medicine, Vienna & Mycoplasma Biosafety Services GmbH

Various test methods are applied to ascertain that neither the original cells used for the production of biological medicinal products – the so-called master cell banks – nor the production cells themselves are contaminated with mycoplasma bacteria.

One of the most sensitive test methods is the nucleic acid amplification technique (NAT). It involves amplification of sections of the bacterial genome by a billion, enabling the detection of the pathogenic agent. As with other test methods, a prerequisite for test reliability is its verification using suitable reference materials – so-called WHO International Standards (IS).

Coworkers of PD Dr Micha Nübling, head of the Section Molecular Virology of the Division Virology at the Paul-Ehrlich-Institut, have developed the first IS for NAT testing for mycoplasma (“1st WHO IS for mycoplasma DNA for NAT assay designed for generic mycoplasma detection”).

The Section at the PEI forms part of the WHO Collaborating Centre for Quality Assurance of Blood Products and in vitro Diagnostic Devices at the institute. Part of the development process of the IS involved an international feasibility study, in which four distantly related mycoplasma species were assayed in different concentrations by 21 laboratories using 26 NAT methods.

Based on the results obtained from these studies, the WHO standard was designed and manufactured and finally established by the WHO “Expert Committee on Biological Standardization (ECBS)”. Professor Klaus Cichutek, president of the Paul-Ehrlich-Institut, is a member of the ECBS.

This WHO IS is now available for the determination of quality features of NAT tests (e.g. the detection limit), the calibration of quantitative assays and the definition of regulatory requirements for mycoplasma testing. “We are pleased that we have succeeded in developing this WHO standard, which will contribute to making worldwide test methods for the detection of mycoplasmas - more reliable and comparable with each other“, says PD Dr Micha Nübling.

Original Publication
Nübling CM, Baylis SA, Hanschmann KM, Montag-Lessing T†,
Chudy M, Kreß J, Ulrych U, Czurda S, Rosengarten R, and
the Mycoplasma Collaborative Study Group (2015): World Health Organization International Standard to Harmonize Assays for Detection of Mycoplasma DNA. Appl Environ Microbiol. 2015 Jun 12. pii: AEM.01150-15
doi:10.1128/AEM.01150-15


The Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines in Langen near Frankfurt/Main, is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and veterinary vaccines. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the varied and many tasks performed at the institute. The PEI, with its roughly 800 staff, also has advisory functions at a national level (federal government, federal states (Länder)), and at an international level (World Health Organization, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.ncbi.nlm.nih.gov/pubmed/?term=World+Health+Organization+International... - Abstract
http://aem.asm.org/content/early/2015/06/08/AEM.01150-15.full.pdf - Fulltext Accepted Manuscript

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>