Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A game of ping pong for the eyes

03.06.2014

Have you ever tried to keep your eyes still while looking out the window of a moving train? It does not work: our eyes move involuntarily without a break. Munich researchers are now unraveling the basis of this so-called optokinetic reflex: there are certain brain cells encoding both the speed of the landscape and the eye movement.

Enjoying the landscape when traveling by train—while this activity sounds like pure relaxation, in reality, it requires maximum performance of our eyes’ motor system. To prevent blurring of the passing image, our eyes need to follow the environmental pace with many repetitive brief movements.


Brain cells encoding both the speed of the landscape and the eye movement ensure that we can clearly recognize a passing scenery instead of seeing it blurred.

Mareike Kardinal/Bernstein Koordinationsstelle (BCOS)

Scientists led by Professor Stefan Glasauer at the Bernstein Center and LMU Munich have now found in collaboration with colleagues from the Washington National Primate Research Center at the University of Washington in Seattle that neurons in the posterior parietal lobe play an important role in the conversion of the landscape stimuli into a control signal for the eye muscles.

"By means of electrophysiological recordings, we could show that nerve cells of the so-called MSTd area combine information about the motion of the visual stimulus on the retina with the eye movement speed," Lukas Brostek—first author of the study—explains.

The way how this is done clearly differs from cell to cell—hereby enabling the generation of completely new signals. Using computer models, the researchers demonstrated that the observed distribution of signal combinations corresponds exactly to the one required to calculate the velocity of the ambient scene. This is the information the brain ultimately requires to control eye movements.

Several areas of the brain are involved in the control of the optokinetic reflex. The necessary information processing includes essentially three steps: In a first step, the speed of a visual stimulus on the retina is calculated. In a second step, the proper eye motion is combined with this information to obtain the environmental velocity.

This is the process, the researchers were now able to localize in the brain. "The neurons we have recorded from provide the basis for the final step—the unconscious control of eye muscles. Hereby they ensure that our eye movements match the environmental motion and that we can recognize a passing scenery instead of seeing it blurred," Glasauer says.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Stefan Glasauer
LMU Munich
Department of Neurology
Marchioninistr. 15
81377 Munich (Germany)
Tel: +49 (0)89 7095-4839
Email: sglasauer@nefo.med.uni-muenchen.de

Original publication:
L. Brostek, U. Büttner, M. J. Mustari & S. Glasauer (2014): Eye velocity gain fields in MSTd during optokinetic stimulation. Cerebral Cortex, advanced online publication
doi: 10.1093/cercor/bhu024

Weitere Informationen:

http://www.bccn-munich.de/people/scientists-2/stefan-glasauer Stefan Glasauer
http://www.bccn-munich.de Bernstein Center München
http://www.uni-muenchen.de LMU Munich
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: BMBF Bernstein LMU Neuroscience eyes landscape movement movements muscles neurons stimulus

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Production research by Fraunhofer IAO honored with three awards at the ICPR 2015

31.08.2015 | Awards Funding

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015 | Materials Sciences

Manchester Team Reveal New, Stable 2D Materials

31.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>