Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A game of ping pong for the eyes

03.06.2014

Have you ever tried to keep your eyes still while looking out the window of a moving train? It does not work: our eyes move involuntarily without a break. Munich researchers are now unraveling the basis of this so-called optokinetic reflex: there are certain brain cells encoding both the speed of the landscape and the eye movement.

Enjoying the landscape when traveling by train—while this activity sounds like pure relaxation, in reality, it requires maximum performance of our eyes’ motor system. To prevent blurring of the passing image, our eyes need to follow the environmental pace with many repetitive brief movements.


Brain cells encoding both the speed of the landscape and the eye movement ensure that we can clearly recognize a passing scenery instead of seeing it blurred.

Mareike Kardinal/Bernstein Koordinationsstelle (BCOS)

Scientists led by Professor Stefan Glasauer at the Bernstein Center and LMU Munich have now found in collaboration with colleagues from the Washington National Primate Research Center at the University of Washington in Seattle that neurons in the posterior parietal lobe play an important role in the conversion of the landscape stimuli into a control signal for the eye muscles.

"By means of electrophysiological recordings, we could show that nerve cells of the so-called MSTd area combine information about the motion of the visual stimulus on the retina with the eye movement speed," Lukas Brostek—first author of the study—explains.

The way how this is done clearly differs from cell to cell—hereby enabling the generation of completely new signals. Using computer models, the researchers demonstrated that the observed distribution of signal combinations corresponds exactly to the one required to calculate the velocity of the ambient scene. This is the information the brain ultimately requires to control eye movements.

Several areas of the brain are involved in the control of the optokinetic reflex. The necessary information processing includes essentially three steps: In a first step, the speed of a visual stimulus on the retina is calculated. In a second step, the proper eye motion is combined with this information to obtain the environmental velocity.

This is the process, the researchers were now able to localize in the brain. "The neurons we have recorded from provide the basis for the final step—the unconscious control of eye muscles. Hereby they ensure that our eye movements match the environmental motion and that we can recognize a passing scenery instead of seeing it blurred," Glasauer says.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Stefan Glasauer
LMU Munich
Department of Neurology
Marchioninistr. 15
81377 Munich (Germany)
Tel: +49 (0)89 7095-4839
Email: sglasauer@nefo.med.uni-muenchen.de

Original publication:
L. Brostek, U. Büttner, M. J. Mustari & S. Glasauer (2014): Eye velocity gain fields in MSTd during optokinetic stimulation. Cerebral Cortex, advanced online publication
doi: 10.1093/cercor/bhu024

Weitere Informationen:

http://www.bccn-munich.de/people/scientists-2/stefan-glasauer Stefan Glasauer
http://www.bccn-munich.de Bernstein Center München
http://www.uni-muenchen.de LMU Munich
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: BMBF Bernstein LMU Neuroscience eyes landscape movement movements muscles neurons stimulus

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>