Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A game of ping pong for the eyes


Have you ever tried to keep your eyes still while looking out the window of a moving train? It does not work: our eyes move involuntarily without a break. Munich researchers are now unraveling the basis of this so-called optokinetic reflex: there are certain brain cells encoding both the speed of the landscape and the eye movement.

Enjoying the landscape when traveling by train—while this activity sounds like pure relaxation, in reality, it requires maximum performance of our eyes’ motor system. To prevent blurring of the passing image, our eyes need to follow the environmental pace with many repetitive brief movements.

Brain cells encoding both the speed of the landscape and the eye movement ensure that we can clearly recognize a passing scenery instead of seeing it blurred.

Mareike Kardinal/Bernstein Koordinationsstelle (BCOS)

Scientists led by Professor Stefan Glasauer at the Bernstein Center and LMU Munich have now found in collaboration with colleagues from the Washington National Primate Research Center at the University of Washington in Seattle that neurons in the posterior parietal lobe play an important role in the conversion of the landscape stimuli into a control signal for the eye muscles.

"By means of electrophysiological recordings, we could show that nerve cells of the so-called MSTd area combine information about the motion of the visual stimulus on the retina with the eye movement speed," Lukas Brostek—first author of the study—explains.

The way how this is done clearly differs from cell to cell—hereby enabling the generation of completely new signals. Using computer models, the researchers demonstrated that the observed distribution of signal combinations corresponds exactly to the one required to calculate the velocity of the ambient scene. This is the information the brain ultimately requires to control eye movements.

Several areas of the brain are involved in the control of the optokinetic reflex. The necessary information processing includes essentially three steps: In a first step, the speed of a visual stimulus on the retina is calculated. In a second step, the proper eye motion is combined with this information to obtain the environmental velocity.

This is the process, the researchers were now able to localize in the brain. "The neurons we have recorded from provide the basis for the final step—the unconscious control of eye muscles. Hereby they ensure that our eye movements match the environmental motion and that we can recognize a passing scenery instead of seeing it blurred," Glasauer says.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Prof. Dr. Stefan Glasauer
LMU Munich
Department of Neurology
Marchioninistr. 15
81377 Munich (Germany)
Tel: +49 (0)89 7095-4839

Original publication:
L. Brostek, U. Büttner, M. J. Mustari & S. Glasauer (2014): Eye velocity gain fields in MSTd during optokinetic stimulation. Cerebral Cortex, advanced online publication
doi: 10.1093/cercor/bhu024

Weitere Informationen: Stefan Glasauer Bernstein Center München LMU Munich National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: BMBF Bernstein LMU Neuroscience eyes landscape movement movements muscles neurons stimulus

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>