Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A feel for flight: How bats are teaching scientists to build better aircraft

04.05.2015

Bats are masters of flight in the night sky, capable of steep nosedives and sharp turns that put our best aircrafts to shame. Although the role of echolocation in bats' impressive midair maneuvering has been extensively studied, the contribution of touch has been largely overlooked.

A study published April 30 in Cell Reports shows, for the first time, that a unique array of sensory receptors in the wing provides feedback to a bat during flight. The findings also suggest that neurons in the bat brain respond to incoming airflow and touch signals, triggering rapid adjustments in wing position to optimize flight control.


Can bats teach aircraft designers a thing or two? Learn how understanding the neuroscience of bat flight could help us design better planes.

Credit: Columbia University Medical Center

"This study provides evidence that the sense of touch plays a key role in the evolution of powered flight in mammals," says co-senior study author Ellen Lumpkin, a Columbia University associate professor of dermatology and physiology and cellular biophysics.

"This research also lays the groundwork for understanding what sensory information bats use to perform such remarkable feats when flying through the air and catching insects. Humans cannot currently build aircrafts that match the agility of bats, so a better grasp of these processes could inspire new aircraft design and new sensors for monitoring airflow."

Bats must rapidly integrate different types of sensory information to catch insects and avoid obstacles while flying. The contribution of hearing and vision to bat flight is well established, but the role of touch has received little attention since the discovery of echolocation.

Recently, co-senior study author Cynthia Moss and co-author Susanne Sterbing-D'Angelo of The Johns Hopkins University discovered that microscopic wing hairs stimulated by airflow, are critical for flight behaviors such as turning and controlling speed. But until now, it was not known how bats use tactile feedback from their wings to control flight behaviors.

In the new study, the Lumpkin and Moss labs analyzed, for the first time, the distribution of different sensory receptors in the wing and the organization of the wing skin's connections to the nervous system. Compared to other mammalian limbs, the bat wing has a unique distribution of hair follicles and touch-sensitive receptors, and the spatial pattern of these receptors suggests that different parts of the wing are equipped to send different types of sensory information to the brain.

"While sensory cells located between the "fingers" could respond to skin stretch and changes in wind direction, another set of receptors associated with hairs could be specialized for detecting turbulent airflow during flight," says Sterbing-D'Angelo, who also holds an appointment at the University of Maryland.

Moreover, bat wings have a distinct sensory circuitry in comparison to other mammalian forelimbs. Sensory neurons on the wing send projections to a broader and lower section of the spinal cord, including much of the thoracic region. In other mammals, this region of the spinal cord usually receives signals from the trunk rather than the forelimbs. This unusual circuitry reflects the motley roots of the bat wing, which arises from the fusion of the forelimb, trunk, and hindlimb during embryonic development.

"This is important because it gives us insight into how evolutionary processes incorporate new body parts into the nervous system," says first author Kara Marshall of Columbia University. "Future studies are needed to determine whether these organizational principles of the sensory circuitry of the wing are conserved among flying mammals."

The researchers also found that neurons in the brain responded when the wing was either stimulated by air puffs or touched with a thin filament, suggesting that airflow and tactile stimulation activate common neural pathways.

"Our next steps will be following the sensory circuits in the wings all the way from the skin to the brain. In this study, we have identified individual components of these circuits, but next we would like to see how they are connected in the central nervous system," Moss says. "An even bigger goal will be to understand how the bat integrates sensory information from the many receptors in the wing to create smooth, nimble flight."

The paper is titled, "Somatosensory Substrates of Flight Control in Bats." The authors are Ellen A. Lumpkin, Kara L. Marshall, Mohit Chadha, Laura A. deSouza (CUMC); Susanne J. Sterbing-D'Angelo, Cynthia F. Moss (Johns Hopkins University).

The study was funded by grants from the National Institutes of Health (R01NS073119), Air Force Office of Scientific Research (FA95501210109), and other sources listed in the paper.

The other authors declare no financial or other conflicts of interest.

Lucky Tran | EurekAlert!

Further reports about: airflow insects nervous neurons sensory sensory information signals spinal spinal cord

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>