Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A childhood dilemma: Growth or Play

17.08.2015

Primates that play, grow slower but benefit later in life

Frolicking, wrestling, climbing, jumping – Playing is a lot of fun and promotes development but is also very strenuous. Behavioral biologists therefore suspect that animals only play intensively if they have surplus energy at their disposal or if playing brings about vital advantages.


Wild Assamese macaque infants inspecting a knee at the Phu Khieo Wildlife Sanctuary in northeastern Thailand.

Photo: Andreas Berghänel

Scientists led by Julia Ostner from the University of Göttingen and the German Primate Center - Leibniz Institute for Primate Research investigated this in young Assamese macaques in their natural habitat in Thailand. They found that those animals that play a lot grow more slowly than their less active conspecifics. However, during play they learn motoric skills that are vital for fight and flight. Thus, it depends on the respective conditions whether faster growth or more play is the right choice (Science Advances, 2015).

Active play promotes motoric development but at the same time it uses a lot of energy, which is required for an unimpeded growth process. Evolutionary biologists examining play behavior in animals are faced with a Darwinian paradox: Most definitions of play behavior include that the behavior does not serve any immediate purpose and is not assignable to an obvious function.

Any behavior that generates costs but no benefits should disappear through natural selection. The prevalence of play behavior in the animal kingdom was therefore explained by the notion that it produces indirect or long-term benefits but occurs only when the animals have sufficient energy available: Playing promotes the motoric, cognitive and social development and only takes place when the animals are healthy, well fed and safe. "Our findings on Assamese macaques contradict this notion", says Andreas Berghänel, first author of the published study.

Young Assamese macaques, who spend a lot of time wrestling and romping in the jungles of Thailand, grow more slowly than their less playful conspecifics. "Thus, unconstrained development does not appear to be more important than play, young monkeys overexert themselves so much by playing that they cannot keep up with the growth process,” says Julia Ostner, head of the study.

The more playful monkeys thereby risk maturing later and having fewer offspring. However, there is also a clear benefit: The more time an infant spent playing intensely before acquiring a new motoric skill, the earlier in life it masters this motoric task. A faster motoric development is very beneficial if one is involved in fights or must flee from enemies. "Thus, my recommendation to parents: send your kids out to play and feed them a good dinner afterwards to make them grow tall and smart", says Julia Ostner.

Since 2014 Julia Ostner is Professor and Head of Department at the Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology at the University of Göttingen. In addition, she heads the Research Group Social Evolution in Primates at the German Primate Center - Leibniz Institute for Primate Research since 2015. Julia Ostner studies the behavior of Assamese macaques at a research station in Phu Khieo Wildlife Sanctuary in Thailand. Since 2014, the research station is financed by the German Primate Center.

Original Publication

Andreas Berghänel, Oliver Schülke, Julia Ostner (2015): Locomotor play drives motor skill acquisition at the expense of growth: a life history trade-off. Science Advances. http://advances.sciencemag.org/content/1/7/e1500451

Contact

Prof. Dr. Julia Ostner
Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology at the University of Göttingen and Research Group Social Evolution in Primates, German Primate Center
Phone: +49 551 39-33925
Email: jostner@gwdg.de

Dr. Sylvia Siersleben (PR)
Phone: +49 551 3851-163
Email: ssiersleben@dpz.eu

Printable pictures and videos are available in our media database. We kindly request a specimen copy in case of publication.

The German Primate Center (DPZ) – Leibniz Institute for Primate Research conducts biological and biomedical research on and with primates in the fields of infection research, neuroscience and primate biology. The DPZ maintains three field stations in the tropics and is the reference and service center for all aspects of primate research. The DPZ is one of 89 research and infrastructure facilities of the Leibniz Association.

Weitere Informationen:

http://www.dpz.eu/de/startseite.html - Website of the German Primate Center
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=2861 - Media database
http://www.dpz.eu/en/unit/social-evolution-in-primates/about-us.html - Research group Social Evolution in Primates
http://www.uni-goettingen.de/en/153624.html - Department of Behavioral Ecology, University of Göttingen

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Further reports about: Behavioral Ecology Evolution ecology macaques monkeys

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>