Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A battle for ant sperm

29.10.2014

And you thought the sexual battles between people could get weird and fierce? Try ants.

In a new study, biologists at the University of Vermont have discovered some queen ants that make sexual bondage into a life and death fight.


The red queen in the middle is mating with the upside-down male on the right. Their copulatory organs are locked in place, so the male can completely let go of the queen with his legs and still be firmly attached. The ant on the left is a competitor male trying to get in on the action.

Credit: Michael Herrmann and Sara Helms Cahan

In a discovery new to science, their research shows that sexual conflict between two species can drive an evolutionary bedroom-battle royal, leading to competing adaptations in which female ants of one species manage to manhandle sperm away from the unwitting males of a different species during intercourse. The study was published in the October 29 online edition of the Proceedings of the Royal Society B.

In the desert along the Arizona/New Mexico border, the scientists observed mating between two species of Pogonomyrmex harvester ants that are known to hybridize. The queens of one species will happily mate with males of another species. But these queens have a trick in their antly boudoir: they only use this sperm from the other species to produce sterile worker ants that they need to build their colonies.

This, you might imagine, isn't what the male ants are hoping will happen with their precious seed. Sure, these males will produce lots of daughters via this queen, but these daughters will be sterile and "so they'll have no grandchildren," says Sara Helms Cahan, a biologist at UVM who co-led the study with her graduate student and lead author Michael Herrmann.

Sterile offspring are directly contrary to the males' long-term evolutionary interest in passing on their genes. So why do these males agree to hook up with these queens in the first place? In the field studies, Herrmann observed that the males—in the once-a-year mad scrum of competitive mating that these harvester ants exhibit following summer monsoon rains—didn't seem able to distinguish queens of their own species from queens of the other species. That is, they couldn't tell them apart until they began to copulate.

Then—perhaps a bit like other dawnings of awareness among males of a well-known species in the middle of the sex act—the male ants figure out they've made a big mistake. Realizing that they have mated with the wrong species, they get clever, and reduce the rate at which they transfer their sperm into these crosstown queens. "They can mate again," Helms Cahan explains, "so this would preserve their sperm for investment into better mating."

But the queens will not be jilted so easily. They have evolved another trick to counteract the males' strategy: hold on and don't let go. "They lock slow males in copula significantly longer," says Helms Cahan, "until they eventually deliver the same amount of sperm that they normally would have." Score one for the queens.

"Essentially, they are sperm parasites," she says.

The new ant study is a "rather unusual R-rated example," Helms Cahan says, of a larger biological phenomenon called the Red Queen hypothesis. Like the Red Queen in Alice in Wonderland—who says, "you see, it takes all the running you can do, to keep in the same place"—the theory proposes that many plants and animals must constantly adapt and evolve not just to gain reproductive advantage but also to simply avoid extinction when competing against opposing, and also-evolving, organisms in the endless shifting of life.

"In this harvester ant system there really needs to be some sort of stalemate," Herrmann explains, "because if the males actually were able to tell what type of female they were mating with, they would cut off the sperm to the queens that need it." Then the system would collapse because these queens have evolved to only be able to produce workers with sperm of the other species, but not their own.

There is "a conflict of interests," the scientists write in the journal article "as queens must mate with both lineages to produce both daughter queens and the workforce to care for them, but males gain fitness returns only by mating with queens of their own lineage."

The new study is also a powerful illustration of the fact that in the wider biological world, "females are not just passive players in reproduction," Helms Cahan says, "they have their own distinct evolutionary interests, and are just as capable of imposing those interests on their partners when conditions warrant."

Joshua Brown | EurekAlert!
Further information:
http://www.uvm.edu/

Further reports about: ants biological world female produce sexual sexual conflict species sperm sterile summer monsoon

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>