Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A barrier against brain stem cell aging

18.09.2015

Neural stem cells generate new neurons throughout life in the mammalian brain. However, with advancing age the potential for regeneration in the brain dramatically declines. Scientists of the University of Zurich now identified a novel mechanism of how neural stem cells stay relatively free of aging-induced damage. A diffusion barrier regulates the sorting of damaged proteins during cell division.

Yeast are good for making wine, bread, and brewing beer. But they are also a good model for neural stem cells in the mammalian brain. It was known that with every division cellular aging factors are asymmetrically distributed between the mother and the daughter cell, allowing for rejuvenation and full life span of the daughter independent of the age of the mother cell. At least partially responsible for this is the presence of a diffusion barrier that restricts movement of molecules from one side to the other side of the cell during cell division.


Dividing neural stem cells establish a diffusion barrier. It participates in the asymmetric segregation of aging factors such as ubiquitinated, damaged proteins (red) during cell division.

UZH


The strength of the diffusion barrier weakens with advancing age and leads to reduced asymmetry of damaged protein (red) segregation

UZH

Disposing of age

A group of scientists led by Sebastian Jessberger of the Brain Research Institute showed now that also the stem cells of the adult mouse brain asymmetrically segregate aging factors between the mother and the daughter cells.

Responsible for this is a diffusion barrier in the endoplasmic reticulum (a channel system within the cell that is for example important for protein synthesis and transport). The barrier prevents retention of damaged proteins in the stem cell daughter cell keeping the stem cells relatively clean. «Neural stem cell divisions appear to be much more asymmetric than we had previously anticipated,» states Darcie Moore, postdoc in the group of Sebastian Jessberger and lead author of the study.

Barrier weakening

In addition, the authors of the new study published in «Science» found that the strength of the barrier weakens with advancing age. This leads to reduced asymmetry of damaged protein segregation with increasing age of the stem cell. This could be one of the mechanisms responsible for the reduced regeneration capacity in the aged brain as stem cells that retain larger amounts of damaged proteins require longer for the next cell division.

Sebastian Jessberger says: «This is an exciting new mechanism involved in stem cell division and aging. But as of now we are only just beginning to understand the molecular constituents and the true meaning of the barrier for stem cell division in the brain.» One key question to be answered is whether the barrier is established in all somatic stem cells of the body. The answer to this question may open new routes to target age-dependent alterations of stem cell activity in human disease.

Other researchers involved were Gregor-Alexander Pilz, Brain Research Institute, UZH, Marcos Arauzo-Bravo, Biodonostia Health Research Institute, San Sebastian and Yves Barral, Institute of Biochemistry, ETH Zurich. The work was supported by the Swiss National Science Foundation, the Zurich Neuroscience Center of UZH and ETH Zurich, the EMBO Young Investigator Program, the ETH Fellow program, the ERC, and the Human Frontier Science Program.

Literature:
Darcie L. Moore, Gregor-Alexander Pilz, Marcos J. Araúzo-Bravo, Yves Barral, Sebastian Jessberger. A mechanism for the segregation of age in mammalian neural stem cells. Science, 17 September 2015. doi:10.1126/science.aac9868

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles_en.html

Evelyne Brönnimann | Universität Zürich

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>