Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bad songs turns off

07.11.2014

Among grasshoppers, bad singers have little prospects: they put females more off than good singers attract them. This is the result of a recent study by researchers from Berlin.

Which mating partner is the best? To answer this difficult question, female grasshoppers base their decision on the singing skills of their male conspecifics. In the process, the quality of bad singers has much bigger weight than the one of good singers.


A grasshopper of the species Chorthippus biguttulus, which the scientists examined in the study.

Copyright: Monika Eberhard, 2014

The latter has a negligible influence on the decision of females. This is the result of a study by researchers lead by Bernhard Ronacher at the Bernstein Center Berlin and the Humboldt-Universität in Berlin.

The scientists point out that their research results are consistent with current theories of sexual selection: it helps females to avoid time and cost-intensive contacts with unsuitable mating partners—such as with males of other species, which have distinct calling songs.

For the study, the researchers presented female grasshoppers with male calling songs in a sound-isolated chamber. When a female likes a song, it produces a response, which in turn encourages the male in its courtship behavior.

“The animals evaluate song subunits with a more or less constant volume as being most attractive”, explains Jan Clemens, first author of the study. The scientists presented both attractive and non-attractive calling songs to the animals and recorded the female responses to investigate the decision process in the animals.

“We found that especially the beginning of a song has a strong influence on the response of the females,” says Clemens. This could mean that grashopper females are easily coerced into mating with a male after a few good syllables—which contradicts current theories of sexual selection, however. These postulate that females should be choosy and should therefore evaluate well if the males may produce good songs over a longer time period, too.

To unravel the dynamics of decision making in more detail, the researchers analyzed their data using a computational model. This model allowed them to consider further parameters in the analysis of the behavioral data, such as the weight of sensory information in the decision process, or the internal decision threshold of the animal.

“Interestingly, this model provided us with a very different explanation: a bad song has much more weight than a good one during the decision making process. This interpretation is far more consistent with current theories of sexual selection, since it helps to prevent disadventageous mate choices,” says Clemens.

The neuroscientist alludes to the expanded analysis opportunities of computational models. It was the model that helped them to disentangle the behavior of female grashoppers and revealed that the animals are not reacting impulsively to good songs but rather selectively reject “bad” ones.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:

Prof. Dr. Bernhard Ronacher
Humboldt-Universität zu Berlin
Institut für Biologie
Abteilung Verhaltensphysiologie
Invalidenstraße 43
10115 Berlin
Tel: +49 (030) 2093-8806
Email: bernhard.ronacher@rz.hu-berlin.de

Dr. Jan Clemens
Princeton Neuroscience Institute and
Department of Molecular Biology
A53 PNI
Washington Road
Princeton, NJ (USA) 08544
Tel: +1 (609) 258-7668
Email: clemensjan@gmail.com

Original publication:

J. Clemens, S. Krämer, B. Ronacher (2014): Asymmetrical integration of sensory information during mating decisions in grasshoppers. PNAS, advanced online publication
doi: 10.1073/pnas.1412741111


Weitere Informationen:

https://www2.hu-berlin.de/biologie/vhphys  webpage Bernhard Ronacher
http://www.princeton.edu/~janc  webpage Jan Clemens
http://www.hu-berlin.de  Humboldt-Universität zu Berlin
http://www.bccn-berlin.de  Bernstein Center Berlin
http://www.nncn.de/en  National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>