Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bad songs turns off

07.11.2014

Among grasshoppers, bad singers have little prospects: they put females more off than good singers attract them. This is the result of a recent study by researchers from Berlin.

Which mating partner is the best? To answer this difficult question, female grasshoppers base their decision on the singing skills of their male conspecifics. In the process, the quality of bad singers has much bigger weight than the one of good singers.


A grasshopper of the species Chorthippus biguttulus, which the scientists examined in the study.

Copyright: Monika Eberhard, 2014

The latter has a negligible influence on the decision of females. This is the result of a study by researchers lead by Bernhard Ronacher at the Bernstein Center Berlin and the Humboldt-Universität in Berlin.

The scientists point out that their research results are consistent with current theories of sexual selection: it helps females to avoid time and cost-intensive contacts with unsuitable mating partners—such as with males of other species, which have distinct calling songs.

For the study, the researchers presented female grasshoppers with male calling songs in a sound-isolated chamber. When a female likes a song, it produces a response, which in turn encourages the male in its courtship behavior.

“The animals evaluate song subunits with a more or less constant volume as being most attractive”, explains Jan Clemens, first author of the study. The scientists presented both attractive and non-attractive calling songs to the animals and recorded the female responses to investigate the decision process in the animals.

“We found that especially the beginning of a song has a strong influence on the response of the females,” says Clemens. This could mean that grashopper females are easily coerced into mating with a male after a few good syllables—which contradicts current theories of sexual selection, however. These postulate that females should be choosy and should therefore evaluate well if the males may produce good songs over a longer time period, too.

To unravel the dynamics of decision making in more detail, the researchers analyzed their data using a computational model. This model allowed them to consider further parameters in the analysis of the behavioral data, such as the weight of sensory information in the decision process, or the internal decision threshold of the animal.

“Interestingly, this model provided us with a very different explanation: a bad song has much more weight than a good one during the decision making process. This interpretation is far more consistent with current theories of sexual selection, since it helps to prevent disadventageous mate choices,” says Clemens.

The neuroscientist alludes to the expanded analysis opportunities of computational models. It was the model that helped them to disentangle the behavior of female grashoppers and revealed that the animals are not reacting impulsively to good songs but rather selectively reject “bad” ones.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:

Prof. Dr. Bernhard Ronacher
Humboldt-Universität zu Berlin
Institut für Biologie
Abteilung Verhaltensphysiologie
Invalidenstraße 43
10115 Berlin
Tel: +49 (030) 2093-8806
Email: bernhard.ronacher@rz.hu-berlin.de

Dr. Jan Clemens
Princeton Neuroscience Institute and
Department of Molecular Biology
A53 PNI
Washington Road
Princeton, NJ (USA) 08544
Tel: +1 (609) 258-7668
Email: clemensjan@gmail.com

Original publication:

J. Clemens, S. Krämer, B. Ronacher (2014): Asymmetrical integration of sensory information during mating decisions in grasshoppers. PNAS, advanced online publication
doi: 10.1073/pnas.1412741111


Weitere Informationen:

https://www2.hu-berlin.de/biologie/vhphys  webpage Bernhard Ronacher
http://www.princeton.edu/~janc  webpage Jan Clemens
http://www.hu-berlin.de  Humboldt-Universität zu Berlin
http://www.bccn-berlin.de  Bernstein Center Berlin
http://www.nncn.de/en  National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>