Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A backup copy in the central brain: How fruit flies form orientation memory

07.03.2017

Gaseous neurotransmitters play an important role in the short-term orientation memory of Drosophila / Scientist decode biochemical processes

Insects have a spatial orientation memory that helps them remember the location of their destination if they are briefly deflected from their route. Researchers at Johannes Gutenberg University Mainz (JGU) have examined how this working memory functions on the biochemical level in the case of Drosophila melanogaster.


A small group of ring-shaped neurons (green) in the central brain of the fly (magenta) are the seat of visual orientation memory

photo/©: AG Strauss, JGU


A small group of ring-shaped neurons (green) in the ellipsoid body of the fly (magenta in the center of the image) are the seat of visual orientation memory. The scale bar shown at the bottom right of the image is equivalent to 25 micrometers (µm) in length

photo/©: AG Strauss, JGU

They have identified two gaseous messenger substances that play an important role in signal transmission in the nerve cells, i.e., nitric oxide and hydrogen sulfide. The short-term working memory is stored with the help of the messenger substances in a small group of ring-shaped neurons in the ellipsoid body in the central brain of Drosophila.

Flies form a memory of locations they are heading for. This memory is retained for approximately four seconds. This means that if a fly, for instance, deviates from its route for about a second, it can still return to its original direction of travel.

"This recall function represents the key that enables us to investigate the biochemistry of working memory," said Professor Roland Strauss of JGU's Institute of Developmental Biology and Neurobiology. The researchers are particularly interested in learning how a network in an insect's brain can build such an orientation memory and how exactly the related biochemical processes function.

Working on her doctoral thesis, Dr. Sara Kuntz found to her surprise that there are two gaseous neurotransmitters that are involved in information transmission. These gaseous messenger substances do not follow the normal route of signal transmission via the synaptic cleft but can diffuse directly across the membrane of neighboring nerve cells without docking to receptors.

It was already known that, for the purposes of memory formation, nitric oxide (NO) is essential for the feedback of information between two nerve cells. What has now emerged is that NO also acts as a secondary messenger substance in connection with the amplification of the output signals of neurons.

This function of nitric oxide can apparently also be assumed by hydrogen sulfide (H2S). Although researchers were aware that this gas plays a role in the control of blood pressure, they had no idea that it had another function in the nervous system. "It has long been assumed that hydrogen sulfide was harmful to the nervous system. But the results of our research show that it is also of importance as a secondary messenger substance," explained Strauss. "We were absolutely astonished to discover that there are two gaseous neurotransmitters that are important to memory."

Biochemical signal transduction pathway for visual working memory

Strauss and his colleagues postulate that both neurotransmitters together with cyclic guanosine monophosphate (cGMP) form the perfect storage media for short-term memories. They presume the process functions as follows: The fruit fly sees an orientation point and moves in its direction, at which point nitric oxide is formed. The nitric oxide stimulates an enzyme that then synthesizes cGMP. Either the nitric oxide itself or cGMP accumulate in a segment of the doughnut-shaped ellipsoid body that corresponds to the original direction taken by the fly.

The ellipsoid body is located in the central complex of the insect brain and is divided into 16 segments, rather like slices of cake, each of which represents a particular spatial orientation. Given that a Drosophila fly deviates from its path because it loses sight of its initial orientation point and temporarily becomes aware of another, that fly is then able to get back on its original course because a relatively large quantity of NO or cGMP has accumulated in the corresponding ellipsoid body segment.

However, all of this only functions under one condition. The memory is only called up if the fly does not see anything in the interim, the fly must also lose sight of the second orientation point. "The recall function only becomes relevant when there is nothing more to see and readily acts as an orientation aid for periods of up to four seconds," explained Dr. Sara Kuntz, primary author of the study, adding that this seemingly short time span of four seconds is perfectly adequate to enable a fly to deal with such a problem. "The ellipsoid body retains the backup copy to span any such brief interruptions." There is no point in having a working memory with a longer duration as objects that have been selected as orientation points are not necessarily anchored in place but may themselves also move.

Images:
http://www.uni-mainz.de/bilder_presse/10_drosophila_gedaechtnis_ort_01.jpg
A small group of ring-shaped neurons (green) in the central brain of the fly (magenta) are the seat of visual orientation memory
photo/©: AG Strauss, JGU

http://www.uni-mainz.de/bilder_presse/10_drosophila_gedaechtnis_ort_02.jpg
A small group of ring-shaped neurons (green) in the ellipsoid body of the fly (magenta in the center of the image) are the seat of visual orientation memory. The scale bar shown at the bottom right of the image is equivalent to 25 micrometers (µm) in length
photo/©: AG Strauss, JGU

Publication:
Sara Kuntz, Burkhard Poeck, Roland Strauss
Visual Working Memory Requires Permissive and Instructive NO/cGMP Signaling at Presynapses in the Drosophila Central Brain
Current Biology, 16 February 2017
DOI: 10.1016/j.cub2016.12.056

Further information:
Prof. Dr. Roland Strauss
Institute of Developmental Biology and Neurobiology
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25034
fax +49 6131 39-25443
e-mail: rstrauss@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/abt3/307.php

Weitere Informationen:

http://www.cell.com/current-biology/abstract/S0960-9822(16)31538-X – Article in Current Biology ;
http://www.bio.uni-mainz.de/zoo/abt3/269.php – Visual Orientation Behavior research at JGU ;
http://www.uni-mainz.de/presse/12513_ENG_HTML.php – Press release "Even fruit flies have an orientation memory: Recall tested in a virtual space", 3 June 2008

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>