Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

53 genes responsible for kidney functionality discovered

21.01.2016

By analysing genetic data from 175,000 people around the world, geneticists at the European Academy of Bolzano (EURAC), heading up the international consortium CKDGen, have now discovered and distinguished 53 genes related to kidney functionality and development. These findings represent an important step in creating an ‘ID card’ for the organ responsible for purifying our blood, while opening up new perspectives for the treatment of kidney failure.

Chronic kidney disease is a serious global health problem. In Italy alone some 3.5 million people suffer from the condition, which in severe cases can lead to dependency on dialysis or even death (10% of the population is likely to be affected throughout their lives). This disease depends upon a number of factors, ranging from diet to lifestyle as well as genetic predisposition.


Cristian Pattaro, researcher of the EURAC Center of Biomedicine

EURAC

A recently-published study in Nature Communications, co-ordinated by Cristian Pattaro, researcher at the European Academy of Bolzano (EURAC) and Caroline Fox from the Harvard Medical School of Boston, USA, now helps shed light on our knowledge of the kidney.

The researchers have discovered and distinguished 53 genes associated with its functionality (its ability to filter metabolic wastes from the blood) and with the development of the organ itself. To achieve this, the geneticists who authored the study examined a huge quantity of data from 175,000 people around the world.

The data were provided by CKDGen (CKD = chronic kidney disease), an international consortium founded in 2009 that consists of some 60 studies in 15 countries worldwide, with EURAC as one of its co-ordinating centres.

“Thanks to the work of the team and the very large amount of data, we were able to conduct extensive bioinformatic analyses. Step by step we are creating a genetic ID card for the kidney,” explains Pattaro “It is a complicated puzzle, but slowly the overall picture is becoming clearer.”

The work will now continue by studying the role of every single gene in detail. For example, it was found that one of the 53 genes catalogued is associated with the ability of the kidney to effectively filter wastes from the blood. The gene can take different forms in different individuals, corresponding to a greater or lesser filtering capacity. Could a malfunction in this feature cause problems for our bodies?

“No gene mutation is in itself lethal, but it may slightly help or hinder the correct function of the kidney,” says Pattaro.

The detailed study of the 53 genes discovered adds new pieces to the complex picture of renal disease, while allowing the identification of the genetic mutations that are especially involved and active in the pathology. Such basic research may in future open new horizons for the development of targeted gene therapies for healthy kidneys.

Weitere Informationen:

https://www.youtube.com/watch?v=DUr2cIuSMcA video interview with Cristian Pattaro, researcher of the EURAC Center of Biomedicine.
http://www.nature.com link to Nature Communications.

Stefanie Gius | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>