Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

100-million-year-old scale insect practiced brood care

31.03.2015

Scientists at the University of Bonn, together with colleagues from China, UK and Poland, have described the oldest evidence of brood care in insects: it is in a female scale insect with her young that is encased in amber as a fossil. The approximately100-million-year-old "snapshot" from the Earth's history shows the six millimetre long tiny insect with a wax cocoon, which protected the eggs from predators and drying out plus associated young nymphs. The researchers are now presenting their results in the respected journal eLIFE.

The small female insect with the waxy cocoon or reticulum is clearly visible in the brownish translucent amber. The wax cover protected both the scale insect and her approximately 60 eggs from predators and from drying out. In contrast to male scale insects, the female has no wings and is specialized to suck on leaves and provide for her offspring.


Wathondara kotejai: The female ensign scale (Ortheziidae) carries an egg sac formed out of wax plated on the the ventral side.

Photo: Dr. Bo Wang


Reconstruction of Wathondara kotejai.

Graphic: Dr. Bo Wang

"Fossils of fragile female scale insects are extremely rare", says Chinese paleontologist Dr. Bo Wang, who as a fellow at the Alexander von Humboldt Foundation researching at the Steinmann Institute of the University of Bonn. "What is unique here is the age of the discovery: 100-million-year-old evidence of brood care among insects has not been found until now." The age of the site of the discovery was determined using the radiometric uranium-lead dating method. In addition to the insect, its eggs and the waxy cover, six young insects are also preserved in this "snapshot" of the Earth's history captured in amber.

The fossil is named after a Buddhist goddess

Dr. Wang used his good contact with collectors in northern Myanmar to find this extraordinarily rare amber inclusion. The international team of scientists gave the 100-million-year-old scale insect the name "Wathondara kotejai" – after the Buddhist earth goddess Wathondara and the Polish entomologist Jan Koteja.

That the female scale insect was preserved in amber was a very rare occurrence, explains Associate Professor and co-author Dr. Torsten Wappler of the Steinmann Institute at the University of Bonn. Usually, it is the male scale insects that are encased by the resin when they stop on the trunks or branches of trees. In this case, resin probably dripped from a branch onto a leaf which enclosed the female scale insect with her cocoon, eggs and nymphs.

Then the resin fossilized. The scientists cut and polish the amber until only a thin layer remained over the enclosed insect. Like looking through a window, the researchers were then able to take three-dimensional, high-resolution photographs of this witness of the past under the microscope.

Brood care increases the survival chances of the offspring

"With brood care, the scale insect increases the survival chances of its offspring", says Dr. Wappler. Once the young scale insect is far enough along in its development, it slips out of the protective wax coating and looks for a new plant where to suck its high-sugar and high-energy sap. Even today, common scale insects have a wax cocoon. Their wax gland is found on the hind end. While turning in circles, they discharge the secretion. The result is a round structure with grooves. "The wax case then looks sort of like a record album from the top", says the paleontologist with a grin. If the animal grows, it moults and discharges wax again. Skin and wax layers therefore alternate in the cocoon.

Amber as a window to the past

From comparing modern scale insects with the amber discovery, the paleontologists concludes that the lifestyle and reproductive behaviour of these insects around 100 million years ago was already quite similar to the current forms. "Inclusions in amber are a unique opportunity to look at life in the past", explains Dr. Wappler. Insects in fossilized resin are usually very well preserved, whereas articulated animals embedded in sediment either do not remain intact at all or are often crushed or crimped by the pressure of the weight of the overlying layers. "That is why the amber discovery of Wathondara kotejai is unique", the scientists at the University of Bonn are convinced.

Publication: Brood Care in a 100-million-year-old scale insect, Journal eLIFE; DOI: 10.7554/eLife.05447.001
Media Contact:

Dr. Bo Wang
Steinmann-Institut der Universität Bonn
Nanjing Institute of Geology and Palaeontology
Chinese Academy of Sciences (Nanjing/China)
Tel. 0228/734682
E-Mail: savantwang@gmail.com

Associate Professor Dr. Torsten Wappler
Steinmann-Institut der Universität Bonn
Tel. 0228/734682
E-Mail: twappler@uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.7554/eLife.05447.001 Publication online

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: Chinese Friedrich-Wilhelms-Universität cocoon eggs female insect offspring reproductive

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>