Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


100-million-year-old scale insect practiced brood care


Scientists at the University of Bonn, together with colleagues from China, UK and Poland, have described the oldest evidence of brood care in insects: it is in a female scale insect with her young that is encased in amber as a fossil. The approximately100-million-year-old "snapshot" from the Earth's history shows the six millimetre long tiny insect with a wax cocoon, which protected the eggs from predators and drying out plus associated young nymphs. The researchers are now presenting their results in the respected journal eLIFE.

The small female insect with the waxy cocoon or reticulum is clearly visible in the brownish translucent amber. The wax cover protected both the scale insect and her approximately 60 eggs from predators and from drying out. In contrast to male scale insects, the female has no wings and is specialized to suck on leaves and provide for her offspring.

Wathondara kotejai: The female ensign scale (Ortheziidae) carries an egg sac formed out of wax plated on the the ventral side.

Photo: Dr. Bo Wang

Reconstruction of Wathondara kotejai.

Graphic: Dr. Bo Wang

"Fossils of fragile female scale insects are extremely rare", says Chinese paleontologist Dr. Bo Wang, who as a fellow at the Alexander von Humboldt Foundation researching at the Steinmann Institute of the University of Bonn. "What is unique here is the age of the discovery: 100-million-year-old evidence of brood care among insects has not been found until now." The age of the site of the discovery was determined using the radiometric uranium-lead dating method. In addition to the insect, its eggs and the waxy cover, six young insects are also preserved in this "snapshot" of the Earth's history captured in amber.

The fossil is named after a Buddhist goddess

Dr. Wang used his good contact with collectors in northern Myanmar to find this extraordinarily rare amber inclusion. The international team of scientists gave the 100-million-year-old scale insect the name "Wathondara kotejai" – after the Buddhist earth goddess Wathondara and the Polish entomologist Jan Koteja.

That the female scale insect was preserved in amber was a very rare occurrence, explains Associate Professor and co-author Dr. Torsten Wappler of the Steinmann Institute at the University of Bonn. Usually, it is the male scale insects that are encased by the resin when they stop on the trunks or branches of trees. In this case, resin probably dripped from a branch onto a leaf which enclosed the female scale insect with her cocoon, eggs and nymphs.

Then the resin fossilized. The scientists cut and polish the amber until only a thin layer remained over the enclosed insect. Like looking through a window, the researchers were then able to take three-dimensional, high-resolution photographs of this witness of the past under the microscope.

Brood care increases the survival chances of the offspring

"With brood care, the scale insect increases the survival chances of its offspring", says Dr. Wappler. Once the young scale insect is far enough along in its development, it slips out of the protective wax coating and looks for a new plant where to suck its high-sugar and high-energy sap. Even today, common scale insects have a wax cocoon. Their wax gland is found on the hind end. While turning in circles, they discharge the secretion. The result is a round structure with grooves. "The wax case then looks sort of like a record album from the top", says the paleontologist with a grin. If the animal grows, it moults and discharges wax again. Skin and wax layers therefore alternate in the cocoon.

Amber as a window to the past

From comparing modern scale insects with the amber discovery, the paleontologists concludes that the lifestyle and reproductive behaviour of these insects around 100 million years ago was already quite similar to the current forms. "Inclusions in amber are a unique opportunity to look at life in the past", explains Dr. Wappler. Insects in fossilized resin are usually very well preserved, whereas articulated animals embedded in sediment either do not remain intact at all or are often crushed or crimped by the pressure of the weight of the overlying layers. "That is why the amber discovery of Wathondara kotejai is unique", the scientists at the University of Bonn are convinced.

Publication: Brood Care in a 100-million-year-old scale insect, Journal eLIFE; DOI: 10.7554/eLife.05447.001
Media Contact:

Dr. Bo Wang
Steinmann-Institut der Universität Bonn
Nanjing Institute of Geology and Palaeontology
Chinese Academy of Sciences (Nanjing/China)
Tel. 0228/734682

Associate Professor Dr. Torsten Wappler
Steinmann-Institut der Universität Bonn
Tel. 0228/734682

Weitere Informationen: Publication online

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Chinese Friedrich-Wilhelms-Universität cocoon eggs female insect offspring reproductive

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>