Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop machine-learning method to predict the behavior of molecules

11.10.2017

An international, interdisciplinary research team of scientists has come up with a machine-learning method that predicts molecular behavior, a breakthrough that can aid in the development of pharmaceuticals and the design of new molecules that can be used to enhance the performance of emerging battery technologies, solar cells, and digital displays.

The work appears in the journal Nature Communications.

"By identifying patterns in molecular behavior, the learning algorithm or 'machine' we created builds a knowledge base about atomic interactions within a molecule and then draws on that information to predict new phenomena," explains New York University's Mark Tuckerman, a professor of chemistry and mathematics and one of the paper's primary authors.


A new learning algorithm is illustrated on a molecule known as malonaldehyde that undergoes an internal chemical reaction. The distribution of red points corresponds molecular configurations used to train the algorithm. The blue points represent configurations generated independently by the learning algorithm. The turquoise points confirm the predictions in an independent numerical experiment.

Image courtesy of Leslie Vogt

The paper's other primary authors were Klaus-Robert Müller of Berlin's Technische Universität (TUB) and the University of California Irvine's Kieron Burke.

The work combines innovations in machine learning with physics and chemistry. Data-driven approaches, particularly in the area of machine learning, allow everyday devices to learn automatically from limited sample data and, subsequently, to act on new input information. Such approaches have transformed how we carry out common tasks like online searching, text analysis, image recognition, and language translation.

In recent years, related development has occurred in the natural sciences, with efforts directed toward engineering, materials science, and molecular design. However, machine- learning approaches in these fields have generally not explored the creation of methodologies--tools that could advance science in ways that have already been achieved in banking and public safety.

The research team created a machine that can learn complex interatomic interactions, which are normally prescribed by complex quantum mechanical calculations, without having to perform such intricate calculations.

In constructing their machine, the researchers created a small sample set of the molecule they wished to study in order to train the algorithm and then used the machine to simulate complex chemical behavior within the molecule.

As an illustrative example, they chose a chemical process that occurs within a simple molecule known as malonaldehyde. To weigh the viability of the tool, they examined how the machine predicted the chemical behavior and then compared their prediction with our current chemical understanding of the molecule. The results revealed how much the machine could learn from the limited training data it had been given.

"Now we have reached the ability to not only use AI to learn from data, but we can probe the AI model to further our scientific understanding and gain new insights," remarks Klaus-Robert Müller, professor for machine learning at Technical University of Berlin.

A video demonstrating, for the first time, a chemical process that was modelled by machine learning -- a proton transferring within the malonaldehyde molecule -- can be viewed here: http://bit.ly/2xaTuPn.

###

The paper's other authors also include Felix Brockherde, the lead author, who is a Ph.D. student in computer science and software engineering at the TUB, Leslie Vogt, a postdoctoral researcher in chemistry at NYU, and Li Li, a recent graduate from UC Irvine.

The study was supported, in part, by grants from the U.S. Army Research Office (W911NF-13-1-0387), the U.S. National Science Foundation (CHE 1464795), the Information & Communications Technology Promotion (IITP) of the Korean government (No. 2017-0-00451), and the Einstein Foundation.

DOI: 10.1038/s41467-017-00839-3

The impetus for the study came from a meeting between the authors at UCLA's Institute for Pure and Applied Mathematics in Los Angeles, CA.

Media Contact

James Devitt
james.devitt@nyu.edu
212-998-6808

 @nyuniversity

http://www.nyu.edu 

James Devitt | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

Im Focus: Quantum internet goes hybrid

In a recent study, published in Nature, ICFO researchers Nicolas Maring, Pau Farrera, Dr. Kutlu Kutluer, Dr. Margherita Mazzera, and Dr. Georg Heinze led by ICREA Prof. Hugues de Riedmatten, have achieved an elementary "hybrid" quantum network link and demonstrated for the first time photonic quantum communication between two very distinct quantum nodes placed in different laboratories, using a single photon as information carrier.

Today, quantum information networks are ramping up to become a disruptive technology that will provide radically new capabilities for information processing...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

 
Latest News

Blockchain – Use Cases einer disruptiven Technologie

05.12.2017 | Information Technology

Research reveals how cells rebuild after mitosis

05.12.2017 | Life Sciences

Nature's toughest substances decoded

05.12.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>