Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Snot Enhances Electronic Nose

02.05.2007
Researchers at The University of Warwick and Leicester University have used an artificial snot (nasal mucus) to significantly enhance the performance of electronic noses.

The researchers have coated the sensors used by odour sensing "electronic noses” with a mix of polymers that mimics the action of the mucus in the natural nose. This greatly improves the performance of the electronic devices allowing them to pick out a more diverse range of smells.

A natural nose uses over 100 million specialised receptors or sensors which act together in complex ways to identify and tell apart the molecules they encounter. Electronic noses, used in a number of commercial settings including quality control in the food industry, use the same method but often have less than 50 sensors.

This means that electronic noses can discern a much smaller range of smells than the natural nose. However the University of Warwick and Leicester University team have found a way to replicate in their electronic devices how the natural nose’s mucus enhances our sense of smell.

In the natural nose the thin layer of mucus dissolves scents and separates out different odour molecules in a way they arrive at the noses receptors at different speeds/times. Humans are then able to use this information on the differences in time taken to reach different nose receptors to pick apart a diverse range of smells.

The Warwick and Leicester team found that have created an artificial mucus layer to mimic this process. They placed a 10-micron-thick layer of a polymer normally used to separate gases on the sensors within their electronic nose.

They then tested it on a range of compounds and found that their artificial snot substantially improved the performance of their electronic nose allowing it to tell apart smells such as milk and banana which had previously been challenging smells for the device.

University of Warwick researcher Professor Julian Gardner says: “Our artificial mucus not only offers improved odour discrimination for electronic noses it also offers much shorter analysis times than conventional techniques”.

The final device including the sensors and the artificial mucus is contained in a relatively thin piece of plastic just a few centimeters square and costing less than five UK pounds (10 US Dollars) to produce.

The research has just been published in the journal Proceedings of the Royal Society and the research was funded by EPSRC

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/artificial_snot_enhances/

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>