Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New interdisciplinary collaborative research project on the long-term effects of cancer treatment

27.10.2015

Mainz University Medical Center coordinates new research project / Findings will be used to improve cancer therapy / German government provides approximately EUR 3.8 million in financing

Some individuals experience cancer recurrence when they enter adolescence or adulthood after they have been successfully treated for cancer in childhood while others don't. But why is this? This is the core question being considered in a research project directed by the University Medical Center of Johannes Gutenberg University Mainz (JGU).

The German Federal Ministry of Education and Research (BMBF) and the Federal Ministry for the Environment, Nature Conservation, Building, and Nuclear Safety (BMUB) are funding the project with a total of around EUR 3.8 million through the Basic Energy Research 2020+ funding program. The purpose of research in this area is to help identify in future those patients who may have a particular individual susceptibility to radiation so that the treatment they receive can be modified accordingly.

The joint research project on "Intrinsic radiotherapy: the identification of biological and epidemiological long-term effects" (ISIBELa) is being coordinated by the Institute of Medical Biostatistics, Epidemiology, and Informatics (IMBEI) at the Mainz University Medical Center in close cooperation with the on-site Department of Radiation Oncology and Radiation Therapy.

Further involved in the collaborative research project ISIBELa are the German Childhood Cancer Registry, the Institute of Molecular Genetics, Genetic Security Research, and Consulting (IMSB) at Mainz University, the Molecular Epidemiology Unit of the Leibniz Institute for Prevention Research and Epidemiology – BIPS GmbH, and the Biological Radiation research team at TU Darmstadt.

The ISIBELa joint research project is to determine the risk of secondary cancer in later life following successful therapy in childhood. Approximately five to ten percent of all former patients subsequently redevelop cancer. "One of the core aspects we are considering within ISIBELa is whether the cells of various individuals react differently to the ionizing radiation from radiotherapy," explained the IMBEI Director and Coordinator of the research cooperative, Professor Maria Blettner.

Questions of this complexity can today only be resolved by research groups in which there is interdisciplinary collaboration between those involved in fundamental research and clinicians with various specializations. Hence, the work being undertaken by physicians, biologists, epidemiologists, and mathematicians is closely meshed within the ISIBELa project.

In the first part of this multi-phase project, the researchers will initially identify and statistically analyze all cases with secondary cancer after childhood cancer in Germany. During the further course of the project, they will examine how patients with or without secondary cancer differ with regard to various factors, such as the type of primary disease and the treatment received.

Patients will be asked to provide a tissue sample. The tissue samples are examined for evidence of possible genetic and epigenetic causes of cancer using state-of-the-art laboratory techniques. For example, the Institute of Molecular Genetics of JGU is employing the latest methods of high-throughput genome and transcriptome sequencing to look for differences between the patient groups.

"Thanks to the progress made in treatment in recent years, the prognosis for recovery from many types of cancer has significantly improved. We now consider it feasible that we will be able to provide cancer patients with the same life expectancy as healthy persons of the same age. Hence, greater emphasis is being placed on late adverse effects. And this is exactly the area being considered by the new collaborative research project ISIBELa. Our expected results should hopefully enable us to develop methods with which we can fairly reliably identify, before treatment, which patients are particularly susceptible to radiation so that that we can optimize their therapy accordingly," stated Professor Heinz Schmidberger, Director of the Department of Radiation Oncology and Radiation Therapy at the Mainz University Medical Center, Professor Thomas Hankel of the Institute of Molecular Genetics at the Mainz University Medical Center, and Dr. Manuela Marron, epidemiologist and study coordinator at BIPS, representing all involved researchers.

It is mainly attributable to the significant improvements in the diagnosis and treatment of childhood cancer that the probability of survival of, for example, leukemia patients today is now 80 percent compared to just two percent in the 1960s. Radiotherapy was developed as a major means of treating cancer in the 1970s and still remains one of the cornerstones of cancer treatment. In radiotherapy, targeted ionizing radiation is used to eliminate tumor cells.

The ISIBELa collaborative research project is part of the University Center for Tumor Diseases (UCT) at the Mainz University Medical Center. The individualization of cancer therapy is one of the research goals of the UCT. The translational research on long-term effects of treatment should also enhance the international reputation of the UCT. It is to be hoped that collaboration between ISIBELa and UCT will soon lead to the development of less aggressive forms of treatment.

Press Contact:
Oliver Kreft, Press and Public Relations, Mainz University Medical Center, Langenbeckstr. 1, 55131 Mainz, phone: +49 6131 17-7424, fax: +49 6131 17-3496, e-mail: pr@unimedizin-mainz.de

Weitere Informationen:

http://www.unimedizin-mainz.de/uct/startseite/uebersicht.html - University Center for Tumor Diseases (in German) ;
http://www.unimedizin-mainz.de/home.html?L=1 - Mainz University Medical Center

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>