Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach: Researchers succeed in directly labelling and detecting an important RNA modification

30.04.2018

Researchers at the Cells-in-Motion Cluster of Excellence at University of Münster have developed a new method enabling them to locate important modifications to messenger RNA. This is the result of an interdisciplinary collaboration between biochemists and molecular biologists. It has been published in “Angewandte Chemie” (International Edition).

What happens in a cell when genetic information is translated into proteins? In order to study this process, researchers take a closer look on one particular biomolecule inside the cell: messenger ribonucleic acid, mRNA for short. This biomolecule plays a major role in all cellular processes – and it is also the focus of joint research being carried out by two research groups at the Cells-in-Motion Cluster of Excellence at Münster University.


Main authors of the study (from l.): Molecular biologist Dr. Sebastian Leidel, biochemist Katja Hartstock (lead author), molecular biologist Benedikt Nilges und biochemist Prof. Andrea Rentmeister

©WWU/E. Wibberg

One of the groups consists of biochemists and is headed by Prof. Andrea Rentmeister; the other is made up of molecular biologists and is led by Dr. Sebastian Leidel. In their interdisciplinary collaboration, the researchers have succeeded for the first time in chemo-enzymatically labelling an important change in messenger RNA – the so-called m6A modification – and subsequently detecting it precisely by means of modern molecular biological methods.

“This new approach enables us to locate modifications in mRNA with a greater degree of accuracy than ever before,” says Andrea Rentmeister, a professor at the Cluster of Excellence who led the study. Knowing where and to what extent m6A modifications occur can later help researchers to examine more closely the role played by this modification in physiological and pathological processes. The study has been published in the “Angewandte Chemie” journal.

The detailed story:

The genetic information of the DNA is transcribed into messenger RNA in a process known as transcription. Following transcription, mRNA transports the genetic information from the cell nucleus into the cytoplasm. There it serves as a guide for the production of proteins. Proteins, for their part, are the workhorses in a cell and carry out all the cellular tasks.

Like double-stranded DNA, single-stranded RNA consists of a chain of so-called nucleotides. In RNA, however, there are also many chemical changes to these nucleotides – known as RNA modifications. These modifications occur after the genetic information has been read. In the process, simple atomic arrangements – the methyl groups – are attached to the nucleotides.

“One modification currently being hotly debated is the N6-methyladenosine, known as m6A for short,” says Andrea Rentmeister. There is a special reason why this modification is highly interesting, and that is because it appears to be responsible for a series of biological processes, for example for the circadian clock. It also seems to play a role in pathological processes, for example in some forms of cancer or in viral infections.

Biochemists labelled RNA modifications chemo-enzymatically

In order to gain a better understanding of m6A, the researchers want to find the answer to the question: Where exactly in the mRNA is the modification located? To find this out, they have to label it. For this purpose, biologists often use antibodies that attach themselves to the molecule being investigated. This method has its limitations, however, the antibodies can bind not only to the modifications of the mRNA, but also to neighbouring nucleotides. This makes it difficult to locate the modifications precisely. “We now wanted to carry out the labelling with a chemical approach,” Andrea Rentmeister explains. So, for the first time, she and her team used propargyl groups, a slightly longer hydrocarbon residue.

The researchers coupled the propargyl groups to the cosubstrate of the enzyme, and combined all three components with mRNA molecules in the test tube. In its chemical structure, propargyl is similar to a natural molecule bound by a methyltransferase. Methyltransferases for their part are enzymes that are responsible for the modification of mRNA. Thus, the methyltransferases were able to transfer the propargyl group to the RNA. Using so-called click chemistry, the scientists were able to isolate and purify the RNA with propargyl groups.

Molecular biologists detected RNA modifications using Next Generation Sequencing

In order to detect the specifically labelled modifications, the researchers used a special enzyme to transcribe mRNA back into DNA. The resulting DNA strand is a copy of the previous RNA and can be investigated using molecular biological methods.

A team of molecular biologists at the Cells-in-Motion Cluster of Excellence and at the Max Planck Institute for Molecular Biomedicine in Münster headed by Sebastian Leidel sequenced this newly synthesized DNA strand, in other words they read the sequences of nucleotides. In doing so, the researchers used a method known as Next generation sequencing, which enabled them to determine the sequences of nucleotides extremely efficiently. "This method allows us to analyse thousands of sequences in parallel", explains Sebastian Leidel.

Because the researchers had labelled the modifications with the propargyl groups, the enzymes necessary for the rewriting of the RNA arrested. As a result, they failed to transcribe the RNA back into DNA. “The enzymes ceased any activity at the labelled sites and have generated some kind of stop signal,” says Katja Hartstock, a chemist and lead author of the story. The researchers were able to determine these stop signals during the sequencing, which meant that they could detect the sites at which the mRNA modification occurred.

After the initial experiments in the test tube, the researchers applied their new method in a culture of human epithelial cells – HeLa cells. The researchers fed the cells with a propargyl-labelled so-called amino acid precursor, which the cells "ate" and subsequently started the labelling. As already established in the test tube, the propargyl groups attached themselves to the RNA with the help of methyltransferases and allowed the detection of the mRNA modification sites by Next generation sequencing.

The next step the researchers want to take is to apply their method to living organisms in order to study the significance of the modification within their development. Zebrafish are well suited for this purpose as they develop very fast and the modifications are therefore transcribed faster – and are also removed again faster.

Funding:

The Cells-in-Motion Cluster of Excellence at the University of Münster provided funding for the study as part of a joint interdisciplinary research project. Financial support for the study was also provided by the German Research Foundation’s Priority Programme 1784, “Chemical Biology of native Nucleic Acid Modifications”.

Original publication:

Hartstock K, Nilges B, Ovcharenko A, Cornelissen N, Puellen N, Leidel S, Rentmeister A. Enzymatic or in vivo installation of propargyl groups in combination with click chemistry enables enrichment and detection of methyltransferase target sites in RNA. Angew Chem Int Ed Engl 2018; DOI 10.1002/anie.201800188.

Weitere Informationen:

https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201803995 Online version (Abstract/Cover picture)
https://www.uni-muenster.de/Cells-in-Motion/people/all/rentmeister-a.php Prof. Andrea Rentmeister
https://www.uni-muenster.de/Cells-in-Motion/people/all/leidel-s.php Dr. Sebastian Leidel
https://www.uni-muenster.de/Cells-in-Motion/research/projects/flexible-funds/ind... Overview of CiM Flexible Funds Projects

Svenja Ronge | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>