Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Myelin linked to speedy recovery of human visual system after tumor removal

11.12.2014

Understanding recovery process could have implications for many different injuries of the central nervous system

An interdisciplinary team of neuroscientists and neurosurgeons from the University of Rochester has used a new imaging technique to show how the human brain heals itself in just a few weeks following surgical removal of a brain tumor.


This is a human visual pathway, including the optic chiasm, tracts and radiations, revealed by MRI. This subject has a large pituitary tumor, in red, causing compression. These tumors caused by demyelination of the vision pathways and vision loss, but surgery to remove the tumor leads to remarkably rapid remyelination and vision recovery.

Credit: David A. Paul/University of Rochester School of Medicine

In a study featured on the cover of the current issue of the journal Science Translational Medicine, the team found that recovery of vision in patients with pituitary tumors is predicted by the integrity of myelin--the insulation that wraps around connections between neurons--in the optic nerves.

"Before the study, we weren't able to tell patients how much, if at all, they would recover their vision after surgery," explained David Paul, an M.D. candidate in the Department of Neurobiology and Anatomy, and first author of the study.

When pituitary tumors grow large, they can compress the optic chiasm, the intersection of the nerves that connect visual input from the eyes to the brain. Nerve compression can lead to vision loss, which usually improves after these tumors are surgically removed through the nose.

Paul and his colleagues used a technique called diffusion tensor imaging (DTI) to show how changes in a particular bundle of nerve fibers relate to vision changes in these patients.

"DTI measures how water spreads in tissue," explained Bradford Mahon, assistant professor in the Department Brain and Cognitive Sciences and the Department of Neurosurgery, and senior author of the study. "The myelin insulation normally prevents water from spreading within the nerves, which would cause the nerves to malfunction."

Paul describes myelin damage by analogy to an insulated copper cable. In the human brain, DTI can measure the "leakiness of the insulation," or how well myelin constrains the flow of water in brain tissue.

One DTI-based measurement, called radial diffusivity, can be used as an indicator of myelin insulation; an increase in this measure means there is less insulation to restrict the movement of water within a nerve. In their study, the researchers found that inadequate insulation resulted in poorer visual ability in patients.

Paul said this particular patient population is unique because unlike other diseases such as stroke, trauma or multiple sclerosis, these patients have a problem that can be treated by surgery and the effect of the tumor on the brain is the same every time. Every pituitary tumor that grows large enough will compress the optic chiasm in more or less the same place, and removal of the tumor is often followed by a recovery of visual abilities.

"These patients grant us a unique opportunity to understand human brain repair because the surgery is minimally invasive and patients recover very quickly after surgery," said Edward Vates, director of the Pituitary Program in the Department of Neurosurgery at the University of Rochester Medical Center, and co-author of the study.

The measurements established in the study provide a new way to measure the structural integrity of nerve fibers, and may ultimately be applicable across the full range of brain diseases and injuries.

"There's a lot of variability in how people recover from brain injuries," said Mahon. "Anything we can learn about patients who go on to make a good recovery may help us to promote recovery from brain injury of any cause." he adds that the visual system is the best understood circuitry in the human brain, and his lab has developed very precise ways of studying vision before and after surgery.

"If we can develop our prognostic methods in the context of the early visual pathway, then we can apply the same types of models to more complex systems in the brain, like language recovery after a stroke," said Mahon.

"This kind of research will create novel treatments to fix broken nervous systems," said Bradford Berk, director of the new Rochester Neurorestorative Institute. "Harnessing new technologies to help us understand how the brain repairs itself and restores function, and how we can accelerate that process will be one of the keys to restoring neurological function in a wide range of conditions, such as multiple sclerosis, stroke, and traumatic brain injury."

Additional researchers on the study include Elon Gaffin-Cahn, Eric B. Hintz, Giscard J. Adeclat, and Zoë R. Williams from the University of Rochester/University of Rochester School of Medicine, and Tong Zhu from the University of Michigan Medical Center.

The National Institute of Neurological Disorders and Stroke and the National Eye Institute supported the research.

About the University of Rochester

The University of Rochester is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon Business School, Warner School of Education, Laboratory for Laser Energetics, School of Medicine and Dentistry, School of Nursing, Eastman Institute for Oral Health, and the Memorial Art Gallery.

Monique Patenaude | EurekAlert!

Further reports about: Medicine Myelin STROKE human brain multiple sclerosis nerves tumors visual system

More articles from Interdisciplinary Research:

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>