Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Metallic glass: cracking the mystery of flaws


An interdisciplinary study exposes how structural flaws dictate failure strength and deformation in nanosized alloys with super-resilient properties.

A study from A*STAR reveals that designers of metallic-glass-based nanodevices must account for tiny flaws in alloy frameworks to avoid unpredictable catastrophic failure[1]. Understanding how nanoscale metallic glass fractures and fails when subjected to external stress is critical to improving its reliability in devices and composites.

Experimental measurements (left and right) and molecular dynamics simulations (middle) of metallic glass nanopillars reveal that structural flaws play important roles in determining material strength.

Copyright : Adapted by A*STAR with permission from Ref. 1. Copyright 2014 American Chemical Society.

Recently, researchers have found evidence that artificial flaws — miniscule notches carved into the alloy — do not affect the material’s overall tensile strength. But other work has shown that such notches may actually induce the formation of localized cracks.

Mehdi Jafary-Zadeh and co-workers from the A*STAR Institute of High Performance Computing, in collaboration with researchers in the United States, used a combination of physical experiments and computational simulations to study nanoscale flaw tolerance with in-depth precision.

First, the researchers fabricated nickel–phosphorous metallic glass into narrow ‘nanopillars’ bearing tiny notches and mushroom-shaped endcaps that served as tension grips (see image). Guided by high-resolution scanning electron microscopy, they systematically pulled the structures apart until they cracked — an action that consistently occurred at the notched zone, and at failure strengths 40 per cent lower than those for unflawed nanopillars.

The team then turned to massive molecular dynamics simulations to explain these physical results. “Simulating failure modes in the nanopillar metallic glasses required large-scale, three-dimensional models containing millions of atoms,” says Jafary-Zadeh. “Performing simulations at these scales is pretty daunting, but we overcame this challenge with the help of the A*STAR Computational Resource Centre.”

When the researchers modeled atomic strain during nanopillar elongation, they found that the un-notched structures failed via a plastic type of deformation known as shear banding. However, the notched structures were brittle and failed through crack propagation from the flaw point at tensile strengths significantly smaller than the un-notched samples (see video). These observations suggest that ‘flaw insensitivity’ may not be a general feature of nanoscale mechanical systems.

“The theory of flaw insensitivity postulates that the strength of materials that are intrinsically brittle or have limited plastic deformation modes approaches a theoretical limit at the nanoscale, and does not diminish due to structural flaws,” explains Jafary-Zadeh. “However, our results show that failure strength and deformation in amorphous nanosolids depend critically on the presence of flaws.”

Jafary-Zadeh notes that the excellent agreement between experimental results and the simulations is exciting and demonstrates how such computations can bridge the knowledge gap between macroscopic mechanical fracturing and the hidden corresponding mechanisms taking place at atomistic time and length scales.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing.


1. Gu, X. W, Jafary-Zadeh, M., Chen, D. Z., Wu, Z., Zhang, Y.-W. et al. Mechanisms of failure in nanoscale metallic glass. Nano Letters 14, 5858–5864 (2014).

Associated links

A*STAR Research | ResearchSEA
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>