Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting myocardial infarction with nanoparticle tandems

04.12.2017

How can damaged cardiac tissue following a heart attack best be treated with replacement muscle cells? A research team under the supervision of the University of Bonn is now presenting an innovative method on mice: Muscle replacement cells, which are to take over the function of the damaged tissue, are loaded with magnetic nanoparticles. These cells are then injected into the damaged heart muscle and held in place by a magnet, causing the cells to engraft better onto the existing tissue. The scientists show that this leads to a significant improvement in heart function. The journal "Biomaterials" presents the results in advance online, the print version will be published in the future.

In a heart attack, clots usually lead to persistent circulatory problems in parts of the heart muscle, which then cause heart muscle cells to die. Attempts have been made for some time to revitalize the damaged heart tissue with replacement cells.


Injection: Via a cannula introduced into the infarction area, the cells loaded with magnetic nanoparticles are injected into the damaged heart muscle tissue of the mouse.

© Photo: Dr. Annika Ottersbach/Uni Bonn


Prof. Dr. Wilhelm Röll from the Department of Cardiac Surgery of the University Hospital Bonn.

© Foto: UKB

“However, most of the cells are pushed out of the puncture channel during the injection due to the pumping action of the beating heart”, explains Prof. Dr. Wilhelm Röll from the Department of Cardiac Surgery at University Hospital Bonn. Therefore, only a few spare cells remain in the heart muscle, which means that repair is limited.

With an interdisciplinary team, Prof. Röll tested an innovative approach on how to ensure that the injected replacement cells remain in the desired location and engraft onto the heart tissue. The experiments were performed on mice that had previously suffered a heart attack.

In order to be able to better follow the cardiac muscle replacement EGFP expressing cells obtained from fetal mouse hearts or mouse stem cells were employed. These fluorescent muscle cells were loaded with tiny magnetic nanoparticles and injected through a fine cannula into the damaged heart tissue of the mice.

In the magnetic field, the nanoparticle-loaded replacement cells remain in place

In some of the rodents treated this way, a magnet placed at a distance of a few millimeters from the surface of the heart ensured that a large part of the nanoparticle-loaded replacement cells remained at the desired location. “Without a magnet, about a quarter of the added cells remained in the heart tissue, with a magnet, about 60 percent of them stayed in place”, reports Dr. Annika Ottersbach, who was a PhD student in Prof. Röll's team during the project.

Ten minutes under the influence of the magnetic field were already sufficient to keep a significant proportion of nanoparticle-loaded muscle cells at the target site. Even days after the procedure, the injected cells remained in place and gradually attached themselves to the existing tissue.

“This is surprising, especially since the infarct tissue is relatively undersupplied due to poor perfusion”, says Prof. Röll. Under the influence of the magnet, the replacement muscle cells did not die as frequently, engrafted better and multiplied more. The researchers investigated the reasons for the improved growth:

It was found that these implanted heart muscle cells were packed more densely and could survive better thanks to the more intensive cell-cell interaction. Moreover, the gene activity of many survival functions, such as for cellular respiration, was higher than without a magnet in these replacement cells.

The researchers also demonstrated that cardiac function significantly improved in mice that were treated with nanoparticle muscle cells in combination with a magnet. “After two weeks, seven times as many replacement muscle cells survived, and after two months, four times as many compared to conventional implantation technology”, reports Prof. Röll. Given the lifespan of mice of a maximum of two years, this is a surprisingly lasting effect.

In the research group 917 "Nanoparticle-based targeting of gene and cell-based therapies" funded by the Deutsche Forschungsgemeinschaft (German Research Foundation), a wide range of disciplines worked together, ranging from medicine, physics and engineering to biology. “This interdisciplinary approach facilitated the unusually broad spectrum and depth of the investigations”, says Prof. Röll. The scientists are convinced that this technology can potentially also be transferred to humans. Prof. Röll: “However, there is still a long way to go, and intensive further research is required before this method can be used in a clinical setting.”

Participating institutes

The team included researchers from the Department of Cardiac Surgery at University Hospital Bonn, the Institute of Physiology I at the Life & Brain Center Bonn, the Institute of Molecular Immunology at TUM University Hospital Klinikum rechts der Isar in Munich, the Institute of Medical Engineering of TU Munich, the German National Metrology Institute Physikalisch-Technische Bundesanstalt, the Institute of Pharmacology and Toxicology of the University of Bonn, the Institute of Clinical Chemistry and Clinical Pharmacology of the University Hospital Bonn and the Institute of Cardiology and Sports Medicine of the German Sport University Cologne.

Publication: Annika Ottersbach, Olga Mykhaylykc, Alexandra Heidsieck, Dietmar Eberbeck, Sarah Rieck, Katrin Zimmermann, Martin Breitbach, Britta Engelbrecht, Tobias Brügmann, Michael Hesse, Armin Welz, Philipp Sasse, Daniela Wenzel, Christian Plank, Bernhard Gleich, Michael Hölzel, Wilhelm Bloch, Alexander Pfeifer, Bernd K. Fleischmann and Wilhelm Röll: Improved heart repair upon myocardial infarction: Combination of magnetic nanoparticles and tailored magnets strongly increases engraftment of myocytes, specialist journal “Biomaterials”, DOI: 10.1016/j.biomaterials.2017.11.012

Media contact:

Prof. Dr. Wilhelm Röll
Department of Cardiac Surgery
University Hospital Bonn
Tel. +49 (0)228/28714398
E-Mail: wroell@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Interdisciplinary Research:

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

A quantum entanglement between two physically separated ultra-cold atomic clouds

17.05.2018 | Physics and Astronomy

Researchers control the properties of graphene transistors using pressure

17.05.2018 | Power and Electrical Engineering

XXL computed tomography: a new dimension in X-ray analysis

17.05.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>