Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting stars 2.0

10.11.2014

In winter time, when nights become longer and darker, stargazing can be a fantastic experience and family activity. But in urban areas, the stars disappear behind the skyglow caused by waste light that shines up into the sky. This light pollution is not only a problem for astronomy.

Scientists from the interdisciplinary project “Loss of the Night” study how it affects health, society, and the environment. In order to measure how skyglow is changing, they have developed an app for smartphones, which allows citizen scientists to count the number of visible stars in the night sky. The app, originally only available for Android, has now been expanded to support Apple’s iOS.


A number of improvements were made in response to feedback from the citizen scientists that use the app.

(© Anja Freyhoff)


Screenshot of the “Loss of the Night” app.

(© IGB)

Many people alive today have never seen the Milky Way, because in the cities where they grow up only a handful of stars and planets can be seen at all. But with newly developing technologies, like the LED lamps that were awarded the Nobel Prize this year that might change.

“In recent decades, illumination increased at a rate of about 6% per year” says Dr. Franz Hölker, who studies artificial light at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) in Berlin. “Changes in lighting systems could make the sky brighter or darker, depending on how they are implemented. Our app will help us to understand how the sky is changing worldwide.”

Stargazing for science

On November 10, the researchers released an updated version of their app, which allows participants to determine the number of visible stars in the night sky. ”The app works by interactively directing users to individual stars, and asking whether they can see the star or not”, explains Dr. Christopher Kyba of GFZ Potsdam.

“By determining what the faintest visible star is, we know how many stars are visible at that location, and by extension how bright the sky is.” No prior astronomical experience is necessary. “Before we developed the app, I only knew a few obvious constellations, like Orion. But by using the app I’ve learned lots of stars and constellations by name, without even trying to” said Kyba.

In addition to expanding support to iOS phones and four new languages, a number of improvements were made to the app. The most important change from the scientists’ perspective won’t actually be visible to users: an improved algorithm for suggesting stars that improves the precision of the observations and removes stars that users have had trouble with in the past. Other changes were made in response to feedback from the citizen scientists that use the app.

“The new version fits the user’s data and tells them approximately how many stars are in the sky immediately after the observation is completed, as well as how consistent their observations were”, says Kyba. Shortly after each measurement is made, it appears on a global map of the related “GLOBE at Night” project (http://www.globeatnight.org/map/).

Citizen scientists are important for Research

The researchers say that citizen science is the only currently available method to track global changes in skyglow. This is because satellites that observe Earth at night measure the light that is radiating into the sky, not the brightness that is experienced by people and other organisms on the ground. While models can use satellite data to provide estimates of how bright the sky is, these models need to be tested with data from around the world.

“Another drawback of the current night observing satellites is that they aren’t sensitive to certain wavelengths of light”, says Franz Hölker. “In particular, areas lit by new white LED lights appear darker from these instruments then they really are.”

The app can be downloaded free of charge, and is available in 15 languages (Arabic, Catalan, Chinese, Czech, English, French, German, Hebrew, Italian, Japanese, Polish, Romanian, Slovak, Spanish, and Turkish). While the app can be used at any time, the researchers only analyze data taken when the moon is set. The next moon free period runs from November 11-24. “If you have cloudy skies this month, don’t despair” says Kyba. “The new version will use your location to figure out the next time you can take a measurement.”

Since 2013 the app has been only available for Android phones and was downloaded over 26,500 times. By improving the app and porting it to iOS, the scientists hope to encourage more citizen scientists to take part.

https://play.google.com/store/apps/details?id=com.cosalux.welovestars  (Android)
https://itunes.apple.com/en/app/loss-of-the-night/id928440562  (iOS)

The app was funded by the German Ministry of Education and Research (BMBF) within the framework program “Research for Sustainable Development” (FONA). The original version of the app was programmed by Cosalux GmbH (Offenbach am Main). The new release was programmed by interactive scape GmbH (Berlin).

Contact:
Christopher Kyba, PhD
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin & GFZ, Potsdam
Phone: +49 (0)30 838-71140
Email: christopher.kyba@wew.fu-berlin.de

Dr. Franz Hölker
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin
Phone: +49 (0)30 64 181 665
Email: hoelker@igb-berlin.de

About the “Loss of the Night” project:
http://www.verlustdernacht.de/about-us.html
https://www.youtube.com/watch?v=Dahf3_86qjk&list=UUCs1m_eu_qMdFguWU2CTjKg
http://lossofthenight.blogspot.com

In the interdisciplinary “Loss of the Night” research project, scientists investigate the reasons for the increasing illumination of the night, its ecological, cultural and socioeconomic effects, and the effects on human health. The project management is situated at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB). The results of this research will help to develop improved lighting concepts and sustainable technologies. Loss of the Night was funded by the German Ministry of Education and Research and the Berlin Senator for Economics, Technology and Research. Currently the project is supported by the Federal Agency of Nature Conservation (BfN).

About IGB:
The Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, is an independent and interdisciplinary research institute dedicated to the creation, dissemination, and application of knowledge about freshwater ecosystems. Working in close partnership with the scientific community, government agencies, as well as the private sector, guarantees the development of innovative solutions to the most pressing challenges facing freshwater ecosystems and human societies. The IGB is part of the Forschungsverbund Berlin e.V. (FVB). The Forschungsverbund came into being in 1992 in a unique historical situation as the successor organization of the former Academy of Sciences of the GDR.


Weitere Informationen:

http://www.verlustdernacht.de/about-us.html
https://www.youtube.com/watch?v=Dahf3_86qjk&list=UUCs1m_eu_qMdFguWU2CTjKg
http://lossofthenight.blogspot.com
https://play.google.com/store/apps/details?id=com.cosalux.welovestars  (Android)
https://itunes.apple.com/en/app/loss-of-the-night/id928440562  (iOS)
http://www.igb-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>