Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coastal wetlands excel at storing carbon

01.02.2017

New analysis supports mangrove forests, tidal marshes and seagrass meadows as effective climate buffers

In the global effort to mitigate carbon dioxide levels in the atmosphere, all options are on the table--including help from nature. Recent research suggests that healthy, intact coastal wetland ecosystems such as mangrove forests, tidal marshes and seagrass meadows are particularly good at drawing carbon dioxide from the atmosphere and storing it for hundreds to thousands of years.


This figure illustrates the efficiency of (L-R) mangrove forests, salt marshes and seagrass beds as reservoirs for carbon. More carbon dioxide is taken up from the atmosphere (green arrows) than is re-released (black arrows), while a substantial amount is stored in soils (red arrows) for hundreds to thousands of years if left undisturbed.

Credit: Howard et al., 2017, Frontiers in Ecology and the Environment

Policymakers are interested to know whether other marine systems--such as coral reefs, kelp forests, phytoplankton and fish--can mitigate climate effects. A new analysis co-authored by a University of Maryland scientist suggests that, while coastal wetlands serve as effective "blue carbon" storage reservoirs for carbon dioxide, other marine ecosystems do not store carbon for long periods of time.

The research paper, published February 1, 2017 in the journal Frontiers in Ecology and the Environment, also notes that coastal wetlands can help protect coastal communities from storm surges and erosion. Coastal wetland areas are easier for governments to manage compared with ecosystems that reside in international waters, further adding to the strategic value of coastal wetlands in the fight against climate change.

"We compared many different coastal ecosystems and have made a clear case for including coastal wetlands in discussions about greenhouse gas mitigation," said Ariana Sutton-Grier, an assistant research scientist at UMD's Earth System Science Interdisciplinary Center and a co-lead author of the research paper. "Coastal wetlands store a lot of carbon in their soils and are important long-term natural carbon sinks, while kelp, corals and marine fauna are not."

The research paper integrates previous data on a variety of coastal and marine ecosystems to determine which systems are best suited to mitigate climate effects. To make this assessment, Sutton-Grier and her colleagues evaluated how effectively each ecosystem captures carbon dioxide--for example, by plants using it to build their branches and leaves--and how long the carbon is stored, either in plant tissues or in soils.

Coastal wetlands outperformed other marine systems in just about every measure. For example, the researchers estimated that mangrove forests alone capture and store as much as 34 metric tons of carbon annually, which is roughly equivalent to the carbon emitted by 24 million passenger cars in a year. Estimates for tidal marshes and seagrass meadows vary, because these ecosystems are not as well mapped globally, but the total for each could exceed 80 metric tons per year.

All told, coastal wetlands may capture and store more than 200 metric tons of carbon per year globally. Importantly, these ecosystems store 50-90 percent of this carbon in soils, where it can stay for thousands of years if left undisturbed.

"When we destroy coastal wetlands, for coastal development or aquaculture, we turn these impressive natural carbon sinks into additional, significant human-caused greenhouse gas sources," said Sutton-Grier, who is also an ecosystem science adviser for the National Ocean Service at the National Oceanic and Atmospheric Administration.

The researchers' goal is to help inform resource managers and policymakers where to focus their limited resources to have the greatest impact on climate mitigation. The new analysis acknowledges that other ecosystems, such as coral reefs and kelp forests, provide valuable storm and erosion protection, key fish habitat and recreation opportunities, and thus deserve protection. But their capacity to store carbon over the long term is limited.

"A common question I get from coastal managers and other stakeholders is whether oyster reefs, coral and kelp are effective 'blue carbon' habitats," said Stefanie Simpson, a co-author of the paper and manager of the Blue Carbon program at the nonprofit organization Restore America's Estuaries. "This paper highlights the role all of these ecosystems have in the carbon cycle, while calling out our coastal habitats--marsh, seagrass and mangroves--for their role as significant and long-term carbon stores."

Researchers have often looked to terrestrial forests as carbon sinks as well. But most forests do not store substantial amounts of carbon in their soils. As such, the researchers believe that coastal "blue carbon" habitats may stand alone as the most efficient biological reservoirs of stored carbon on Earth.

"The concept of 'blue carbon' has focused scientists and stakeholders on the tremendous potential of managing marine ecosystems for climate mitigation," said Patrick Megonigal, associate director for research at the Smithsonian Environmental Research Center, who reviewed an early draft of the manuscript but was not directly involved in the work. "This analysis takes a big step forward by explaining why coastal wetland ecosystems are particularly attractive for carbon-based management."

###

This work includes contributions from: Ariana Sutton-Grier (the University of Maryland and the National Oceanic and Atmospheric Administration); Jennifer Howard and Emily Pidgeon (Conservation International); Dorothee Herr (the International Union for the Conservation of Nature); Joan Kleypas (the National Center for Atmospheric Research); Emily Landis and Elizabeth Mcleod (the Nature Conservancy); and Stefanie Simpson (Restore America's Estuaries).

The research paper, "Clarifying the role of coastal and marine systems in climate mitigation," Jennifer Howard, Ariana Sutton-Grier, Dorothee Herr, Joan Kleypas, Emily Landis, Elizabeth Mcleod, Emily Pidgeon, and Stephanie Simpson, was published February 1, 2017 in the journal Frontiers in Ecology and the Environment.

This work was supported by the National Oceanic and Atmospheric Administration (Award No. NA14NES4320003), the Nature Conservancy, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, the International Union for the Conservation of Nature, and the Prince Albert II de Monaco Foundation. The content of this article does not necessarily reflect the views of these organizations.

Media Relations Contact: Matthew Wright, 301-405-9267, mewright@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Media Contact

Matthew Wright
mewright@umd.edu
301-405-9267

 @UMDRightNow

http://www.umdrightnow.umd.edu/

Matthew Wright | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs
07.11.2017 | Technische Universität München

nachricht NRL clarifies valley polarization for electronic and optoelectronic technologies
20.10.2017 | Naval Research Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>