Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bergamotene - alluring and lethal for Manduca sexta

21.04.2017

The tobacco hawkmoth Manduca sexta is an important pollinator of the wild tobacco species Nicotiana attenuata; yet hungry larvae hatch from the eggs these moths lay on the leaves.

An interdisciplinary team of scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, has described a gene in Nicotiana attenuata which enables the plant to solve the dilemma that arises when a pollinator is also a dangerous herbivore. The gene NaTPS38 regulates the production of the volatile compound (E)-α-bergamotene. At night, the tobacco flowers produce this odor which is attractive to adult tobacco hawkmoths, while during the day, the tobacco leaves emit the compound to lure predatory bugs to feed on Manduca sexta larvae and eggs. (Current Biology, April 20, 2017, DOI: 10.1016/j.cub.2017.03.017)


During the night, a tobacco hawkmoth (Manduca sexta) uses its proboscis to suck nectar from a flower of the wild tobacco Nicotiana attenuata.

Danny Kessler / Max Planck Institute for Chemical Ecology


A predatory Geocoris bug attacks a freshly hatched tobacco hornworm (Manduca sexta) during the day.

André Kessler / Cornell University

Flowering plants depend on pollen vectors in order to reproduce. Yet a plant has a problem if a pollinator, which is attracted by the odors of sweet flowers, lays its eggs on the plant after pollination is complete, and from these eggs hatch voracious caterpillars ready to attack the tasty leaves with their enormous appetite.

Scientists from the Max Planck Institute for Chemical Ecology have discovered a gene in the wild tobacco species Nicotiana attenuata called NaTPS38, which regulates the production of an aromatic compound, the sesquiterpene (E)-α-bergamotene, in both flowers and leaves.

“We observed that Nicotiana attenuata plants emit (E)-α-bergamotene in flowers at night to lure Manduca sexta moths as pollinators. The compound makes a moth keep its proboscis longer in a flower and pollination success is increased. The emission of the same compound in leaves attacked by Manduca sexta larvae during the day, however, attracts the predators of the larvae and acts as an indirect defense,” first author Wenwu Zhou summarizes.

In this way, the tissue-specific emission of one compound helps the wild tobacco plants to interact most advantageously with Manduca sexta.

The study involved researchers from four different groups. Originally, Wenwu Zhou and project leader Shuqing Xu from the Department of Molecular Ecology wanted to study the genetic basis of (E)-α-bergamotene emission after herbivory. They found that the terpene synthase NaTPS38 was activated when insects attacked tobacco plants. Researchers from the Department of Biochemistry were able to confirm that NaTPS38 is indeed involved in the production of (E)-α-bergamotene.

When the researchers examined the expression of NaTPS38 in different parts of the tobacco plants, they found to their surprise that the gene was also highly expressed in the flowers. However, the ecological function of (E)-α-bergamotene emission in flowers was still unclear. The fact that floral (E)-α-bergamotene was mainly emitted at night led to the hypothesis that the compound interacts with nocturnal pollinators, especially Manduca sexta moths.

Further analyses in the Department of Neuroethology demonstrated that the purified (E)-α-bergamotene activated neural receptors at the tip of the proboscis of Manduca sexta moths. Tent experiments with tobacco plants and hawkmoths performed by researchers from the Department of Molecular Ecology revealed that pollination success was increased when the flowers emitted high amounts of (E)-α-bergamotene.

Although the gene NaTPS38 is very similar to a monoterpene synthase, it is nevertheless responsible for the production of the sesquiterpene (E)-α-bergamotene. Usually a gene from the sesquiterpene synthase family regulates the production of such a compound, but in this case, it appears that the gene NaTPS38 violated this general rule.

Analyzing the function and evolutionary history of NaTPS38 revealed that this gene originated from a duplication of a monoterpene synthase which then evolved the ability to produce (E)-α-bergamotene, a sesquiterpene compound. This unique evolutionary process likely occurred before the divergence of different Solanaceae species, the plant family which includes tobacco.

The fact that a single gene in Nicotiana attenuata mediates both pollination and defense by producing tissue-specific (E)-α-bergamotene is an example of a phenomenon called ecological pleiotropy.

“Accumulating evidence suggests that ecological pleiotropy may be quite common in plants. Our work demonstrates that interactions between different ecological factors, such as pollinators and herbivores, are important for plant evolution. However, we know little about the extent to which these interactions can affect the plant’s adaptation to its environment,” explains Shuqing Xu. The scientists are currently developing a new research program that aims to address this question systematically. [AO/KG]


Original Publication:
Zhou, W., Kügler A., McGale, E., Haverkamp, A., Knaden, M., Guo, H., Beran, F., Yon, F., Li, R., Lackus, N., Köllner, T. G., Bing, J., Schuman, M. C., Hansson, B. S., Kessler, D., Baldwin, I. T., Xu, S. (2017). Tissue-specific emission of (E)-α-bergamotene helps resolve the dilemma when pollinators are also herbivores. Current Biology, DOI: 10.1016/j.cub.2017.03.017
http://dx.doi.org/10.1016/j.cub.2017.03.017

Further Information:
Dr. Shuqing Xu, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, +49 3641 57-1122, E-Mail sxu@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2017.html

Weitere Informationen:

http://www.ice.mpg.de/ext/index.php?id=1370 Press release on the homepage of the MPI for Chemical Ecology

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Single metalens focuses all colors of the rainbow in one point

Lens opens new possibilities in virtual and augmented reality

Im Focus: Shape separates substance

Japanese researchers show the phase separation of two substances depends on the topology of the pore

Researchers at University of Tokyo Institute of Industrial Science (IIS) report a new physical model that shows how the topology of a porous material...

Im Focus: New study visualizes motion of water molecules, promises new wave of electronic devices

A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.

A team of researchers led by the Department of Energy's Oak Ridge National Laboratory used a high-resolution inelastic X-ray scattering technique to measure...

Im Focus: Research trip to the mouth of the Amazon River: on the trail of the ocean’s material cycle

It is by far the most abundant river in the world. One fifth of the Earth’s entire freshwater supply flows from its mouth into the Atlantic pushing the ocean’s salt water several hundred kilometers out to sea. In April, Andrea Koschinsky, Professor of Geochemistry at Jacobs University, will travel to the estuary of the Amazon – as head of a recently approved, interdisciplinary research project on board the research ship, Meteor.

The Amazon River is almost 7,000 km long and is not only tremendously abundant but it also transports large quantities of trace metals such as iron and copper...

Im Focus: The Coldest Chip in the World

Physicists at the University of Basel have succeeded in cooling a nanoelectronic chip to a temperature lower than 3 millikelvin. The scientists from the Department of Physics and the Swiss Nanoscience Institute set this record in collaboration with colleagues from Germany and Finland. They used magnetic cooling to cool the electrical connections as well as the chip itself. The results were published in the journal Applied Physics Letters.

Even scientists like to compete for records, which is why numerous working groups worldwide are using high-tech refrigerators to reach temperatures as close to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Unlocking the mystery of pollen tube guidance

02.01.2018 | Agricultural and Forestry Science

Streams can be sensors

02.01.2018 | Power and Electrical Engineering

Novel MOF shell-derived surface modification of Li-rich layered oxide cathode

02.01.2018 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>