Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Detection of Cracks and Corrosion using Magnetic Stray Flux

28.04.2015

Whether it's fallen concrete pylons caused by corroded tension wires, a new motor due to damaged pistons or defective sheet steel, even the tiniest cracks or smallest traces of corrosion can have serious consequences, especially in safety-critical environments.

With magnetic stray flux inspections, these flaws can be quickly visualized without destroying or contaminating the material.


FLUXI: handheld stray flux inspection device (prototype shown)

Fraunhofer IZFP

As an alternative to magnetic powder tests, this method can also be used wherever the magnetic powder approach is unsuitable.

Engineers at Saarbrucken-based Fraunhofer IZFP will be introducing a mobile handheld device for magnetic stray flux testing at the 29th annual CONTROL trade fair in Stuttgart (hall 1, exhibit booth 1502), which runs May 5 to May 8.

Scientists at the Fraunhofer Institute for Nondestructive Testing IZFP in Saarbrucken have developed a handheld, wireless test device called FLUXI which is based on magnetic stray flux technology.

This method relies on the same physical effect exploited by magnetic powder testing, a standard and widely-used inspection process in steel manufacturing.

When an external magnetic field is applied to sharp-edged cracks on the surface of a component, additional magnetic dipoles form, which then induce magnetic leakage near the surface. This stray field can be detected and processed with magnetic field sensors.

The enormous potential for instrument technology miniaturization provides a key advantage since extremely difficult to access areas of the component can be quickly and easily subjected to magnetic stray flux inspections.

With FLUXI, manufactured parts and components can be rapidly scanned, allowing potential surface defects to be displayed as images.

Weitere Informationen:

http://www.izfp.fraunhofer.de

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>