Darpa Funds New Photonic Research Center at Illinois

The University of Illinois at Urbana-Champaign has received a grant from the Defense Advanced Research Projects Agency to create a photonic research center to develop ultra-fast light sources for high-speed signal processing and optical communications systems. The grant will provide $6.2 million in funding over four years.

The Hyper-Uniform Nanophotonic Technology Center is directed by Norman K.Y. Cheng, a professor of electrical and computer engineering and a researcher at the university’s micro and nanoelectronics laboratory. Illinois is the lead university for the center. Partner institutions are Columbia University, the Georgia Institute of Technology and Harvard University.

“The HUNT Center’s mission is to develop critical technologies – including hyper-uniform nanophotonic fabrication methods, high-performance quantum dot arrays and ultra-fast lasers – for optoelectronic interconnects,” Cheng said. “The center will address the high-performance optical switching and data routing technologies needed for flexible connections-on-demand and efficient bandwidth delivery in next-generation communications systems.”

A primary focus of the center is improvement in laser technology that is now feasible due to the ultra-fast light-emitting transistor, recently discovered by center researchers Milton Feng and Nick Holonyak Jr. The light-emitting transistor can modulate both electrical and optical signals simultaneously, and could extend the modulation bandwidth of a semiconductor light source from 20 gigahertz to more than 100 gigahertz. Faster signal processing and information transfer would result.

The development of long-wavelength quantum-dot microcavity laser technologies would facilitate large-capacity seamless communications, Cheng said. Researchers at the center will explore ways to improve the size, distribution and optical quality of quantum dots that could be incorporated into the active region of light-emitting-transistor-based lasers and long-wavelength quantum-dot lasers. Proposed techniques include nanoscale semiconductor growth and characterization, nanopatterning, and nanostructure device design and fabrication.

Media Contact

James E. Kloeppel ctm

More Information:

http://www.uiuc.edu

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors