Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016

A submillimeter-thick film with magnetic microdomains was used to control a Q-switched laser, increasing its pulse power 1,000 times

The "Industry 4.0" concept, first introduced by the German government, has recently extended the scope of compact high-power laser applications to, for instance, laser manufacturing, vehicle engine development, or thruster systems for space exploration.


This photo shows researchers working with the MO Q-switched laser. Left: PhD candidate Ryohei Morimoto. Right: Assistant Professor Taichi Goto.

COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

However, integration of a controllable Q-switch into compact solid-state lasers has been challenging because of the mechanisms of EO and AO effects. In addition, previous Q-switches needed a large-sized power supply, which prevented downscaling of the entire system.

Now, researchers at Toyohashi University of Technology, Iowa State University, and the Institute for Molecular Science have developed a magneto-optic (MO) Q-switched laser for the first time, using a 190-micron-thick magnetic garnet film with labyrinth-shaped magnetic domains.

They used custom-made coil and circuits to generate the pulsed magnetic field to be applied to the magnetic garnet, and successfully generated optical output with a pulse width of tens of nanoseconds. This is the first demonstration ever of a Q-switched laser driven by magnetic domain motions, and also the first evidence of the possibility of an integrated Q-switched laser.

"The device was two orders of magnitude smaller than other reported controllable Q-switches," commented Associate Professor Taira.

"The most difficult part of realizing MO Q-switching was to combine three different techniques/fields: the preparation of a magnetic material, the fabrication of a high-speed magnetic field switch, and the construction of a laser cavity," explained PhD candidate Ryohei Morimoto.

According to the first author, Assistant Professor Taichi Goto, "there are no previous reports of MO Q-switches using thin garnets. This is surely the first demonstration, and it also becomes an important first step in the development of an integrated high-power laser."

"We enjoy our collaboration and learn from each other," said Professor Mina Mani. "We further hope not only to advance research and create and pursue new challenges, but also to use science and technology to make a better world for all."

In addition, the researchers found a unique biasing technique that uses magnetism to decrease the electric power needed for Q-switching. When a ring-shaped permanent magnet was placed close to the magnetic garnet, they were able to generate the same optical pulse in the MO Q-switched laser using seven times less electric power. This result showed that this Q-switch does not need a large power supply for operation, meaning that drastic downscaling can be expected. The research team would like their future studies to be useful for laser users all around the world and to help in the establishment of new industries.

###

We acknowledge support from the following institutions:

- Japan Society for the Promotion of Science (JSPS) KAKENHI Nos. 26706009, 26600043, 26220902, 25820124, and 15H02240.

- Japan Science and Technology Agency (JST) - Promoting individual research to nurture the seeds of future innovation and organizing unique, innovative network (PRESTO).

Reference:

T. Goto, R. Morimoto, J. W. Pritchard, M. Mina, H. Takagi, Y. Nakamura, P. B. Lim, T. Taira, and M. Inoue, (2016)."Magneto-optical Q-switching using magnetic garnet film with micromagnetic domains," Opt. Express, 24, (16), 17635-17643. DOI: 10.1364/OE.24.017635.

Further information

Toyohashi University of Technology
1-1 Hibarigaoka, Tempaku
Toyohashi, Aichi Prefecture, 441-8580, JAPAN
Inquiries: Committee for Public Relations
E-mail: press@office.tut.ac.jp

Toyohashi University of Technology, which was founded in 1976 as a National University of Japan, is a leading research institute in the fields of mechanical engineering, advanced electronics, information sciences, life sciences, and architecture.

Website: http://www.tut.ac.jp/english/

Media Contact

Ryoji Inada
press@office.tut.ac.jp

Ryoji Inada | EurekAlert!

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>