Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Weather Channel's Cantore Experiences 3-D Tornado Simulation at Virginia Tech


Re-creating a tornado in 3-D provides a more effective way to study storms

When The Weather Channel meteorologist Jim Cantore stepped into an EF-5 tornado re-created in 3-D in a four-story immersive installation at Virginia Tech, his perspective was that of someone 7,000 feet tall.

Virginia Tech

The Weather Channel's Jim Cantore using a headset that shows a virtual reality style view of the activity in a tornado.

Beneath him was the landscape of Moore, Oklahoma. Around him was the storm that killed 24 people in May 2013.

With support from Virginia Tech’s Institute of Creativity, Arts, and Technology, a student and faculty team from the geography department in the College of Natural Resources and Environment created the storm in the Moss Arts Center facility known as the Cube — a highly adaptable space for research and experimentation in immersive environments.

Cantore was tipped off by Kathryn Prociv, a Virginia Tech geography graduate who is now a producer at The Weather Channel.

She had been a storm chaser with the Virginia Tech team for three years before completing her master’s degree research on the effects of changes in land surfaces on rotating storm intensity in the Appalachian Mountain region.

When Prociv asked her former instructor Dave Carroll what was happening at her alma mater, he told her about the tornado re-creation in the Cube. Cantore promptly made arrangements to visit, accompanied by Greg Forbes, The Weather Channel’s severe weather expert.

Real weather delayed the visit a few months, but on Feb. 6 Cantore was immersed in the re-created storm and broadcasting live.

The project was born when Bill Carstensen, a professor and head of the Department of Geography, told Benjamin Knapp, director of the Institute of Creativity, Arts, and Technology, about Carroll’s 3-D images of storms.

Subsequently, a $25,000 Science, Engineering, Art, and Design grant from the institute made it possible to hire Kenyon Gladu of Troutville, Virginia, a junior majoring in meteorology, and Trevor White of Henrico, Virginia, a master’s student in geography.

Gladu worked with radar data and White did the programming to retrieve the needed NEXRAD (Next-Generation Radar) data and render it appropriately. Institute staffer Run Yu of Beijing, China, a computer science doctoral student in the College of Engineering, placed the storm in the cube.

“We decided to produce that tornadic supercell because it was a catastrophic event,” said Carroll. He was south of Moore with the Virginia Tech storm chase team at the time it occurred. The team members can often safely position themselves within a mile of a storm, but not in that instance.

“It formed in the suburbs of Oklahoma City. We couldn’t engage the storm because of the hazards in that environment — traffic, people fleeing,” he said. “We had to back off.”

“People on the ground could not observe that storm from all angles and directions,” said Carstensen. “But NEXRAD radar captured data throughout the storm. It provided hundreds of thousands of data points in 3-D with several attributes at each data point, including the intensity of precipitation and the direction and speed of floating particulates.

“Our meteorology degree program ties in geospatial science with weather data — to meld atmospheric data with ground data. Geospatial science can register ground data — the rolling hills of Oklahoma and the land cover, such as agriculture, prairie, forests, and urban development. So in this re-creation of the Moore storm, there is the land cover on the ground and the storm above in perfect position.”

The Cube allows complete tracking of where a subject is standing, moving, and looking. An Oculus head-mounted display provides an image of what the subject would see from any vantage point. If there are two people in the cube, they will see each other as avatars and will be able to see different points of view and exchange information.

“Eventually, you will be able to zoom in, to control the scale of what you see,” said Carstensen.

“It’s like a game environment in which you are embedded in the computer,” explained Carroll. “You can then study storms from different perspectives than in the field. You can peel away the outer layers of rain so you can see the business end of the storm. It is a more effective way of looking at storm structure.”

“It will be a valuable tool for researchers, forecasters, and students,” said Carstensen.

The ultimate goal is to bring real-time radar into the Cube — “real time” in this instance being only a four- or five-minute delay. Carstensen and Carroll met with Mike Kleist, a Virginia Tech mathematics graduate who is now vice president of engineering at Weather Services International (WSI), a weather graphics software company.

“Mike said real time was absolutely doable,” said Carstensen. “We could visualize the whole East Coast, or any place that has been mapped, overlain by a snow storm, or a storm surge model.”

“This has great potential for emergency managers,” said Carroll.

Contact Information
Lynn Davis

Lynn Davis | newswise
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>