Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather Channel's Cantore Experiences 3-D Tornado Simulation at Virginia Tech

09.02.2015

Re-creating a tornado in 3-D provides a more effective way to study storms

When The Weather Channel meteorologist Jim Cantore stepped into an EF-5 tornado re-created in 3-D in a four-story immersive installation at Virginia Tech, his perspective was that of someone 7,000 feet tall.


Virginia Tech

The Weather Channel's Jim Cantore using a headset that shows a virtual reality style view of the activity in a tornado.

Beneath him was the landscape of Moore, Oklahoma. Around him was the storm that killed 24 people in May 2013.

With support from Virginia Tech’s Institute of Creativity, Arts, and Technology, a student and faculty team from the geography department in the College of Natural Resources and Environment created the storm in the Moss Arts Center facility known as the Cube — a highly adaptable space for research and experimentation in immersive environments.

Cantore was tipped off by Kathryn Prociv, a Virginia Tech geography graduate who is now a producer at The Weather Channel.

She had been a storm chaser with the Virginia Tech team for three years before completing her master’s degree research on the effects of changes in land surfaces on rotating storm intensity in the Appalachian Mountain region.

When Prociv asked her former instructor Dave Carroll what was happening at her alma mater, he told her about the tornado re-creation in the Cube. Cantore promptly made arrangements to visit, accompanied by Greg Forbes, The Weather Channel’s severe weather expert.

Real weather delayed the visit a few months, but on Feb. 6 Cantore was immersed in the re-created storm and broadcasting live.

The project was born when Bill Carstensen, a professor and head of the Department of Geography, told Benjamin Knapp, director of the Institute of Creativity, Arts, and Technology, about Carroll’s 3-D images of storms.

Subsequently, a $25,000 Science, Engineering, Art, and Design grant from the institute made it possible to hire Kenyon Gladu of Troutville, Virginia, a junior majoring in meteorology, and Trevor White of Henrico, Virginia, a master’s student in geography.

Gladu worked with radar data and White did the programming to retrieve the needed NEXRAD (Next-Generation Radar) data and render it appropriately. Institute staffer Run Yu of Beijing, China, a computer science doctoral student in the College of Engineering, placed the storm in the cube.

“We decided to produce that tornadic supercell because it was a catastrophic event,” said Carroll. He was south of Moore with the Virginia Tech storm chase team at the time it occurred. The team members can often safely position themselves within a mile of a storm, but not in that instance.

“It formed in the suburbs of Oklahoma City. We couldn’t engage the storm because of the hazards in that environment — traffic, people fleeing,” he said. “We had to back off.”

“People on the ground could not observe that storm from all angles and directions,” said Carstensen. “But NEXRAD radar captured data throughout the storm. It provided hundreds of thousands of data points in 3-D with several attributes at each data point, including the intensity of precipitation and the direction and speed of floating particulates.

“Our meteorology degree program ties in geospatial science with weather data — to meld atmospheric data with ground data. Geospatial science can register ground data — the rolling hills of Oklahoma and the land cover, such as agriculture, prairie, forests, and urban development. So in this re-creation of the Moore storm, there is the land cover on the ground and the storm above in perfect position.”

The Cube allows complete tracking of where a subject is standing, moving, and looking. An Oculus head-mounted display provides an image of what the subject would see from any vantage point. If there are two people in the cube, they will see each other as avatars and will be able to see different points of view and exchange information.

“Eventually, you will be able to zoom in, to control the scale of what you see,” said Carstensen.

“It’s like a game environment in which you are embedded in the computer,” explained Carroll. “You can then study storms from different perspectives than in the field. You can peel away the outer layers of rain so you can see the business end of the storm. It is a more effective way of looking at storm structure.”

“It will be a valuable tool for researchers, forecasters, and students,” said Carstensen.

The ultimate goal is to bring real-time radar into the Cube — “real time” in this instance being only a four- or five-minute delay. Carstensen and Carroll met with Mike Kleist, a Virginia Tech mathematics graduate who is now vice president of engineering at Weather Services International (WSI), a weather graphics software company.

“Mike said real time was absolutely doable,” said Carstensen. “We could visualize the whole East Coast, or any place that has been mapped, overlain by a snow storm, or a storm surge model.”

“This has great potential for emergency managers,” said Carroll.

Contact Information
Lynn Davis
540-231-6157
davisl@vt.edu

Lynn Davis | newswise
Further information:
http://www.vt.edu

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>