Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather Channel's Cantore Experiences 3-D Tornado Simulation at Virginia Tech

09.02.2015

Re-creating a tornado in 3-D provides a more effective way to study storms

When The Weather Channel meteorologist Jim Cantore stepped into an EF-5 tornado re-created in 3-D in a four-story immersive installation at Virginia Tech, his perspective was that of someone 7,000 feet tall.


Virginia Tech

The Weather Channel's Jim Cantore using a headset that shows a virtual reality style view of the activity in a tornado.

Beneath him was the landscape of Moore, Oklahoma. Around him was the storm that killed 24 people in May 2013.

With support from Virginia Tech’s Institute of Creativity, Arts, and Technology, a student and faculty team from the geography department in the College of Natural Resources and Environment created the storm in the Moss Arts Center facility known as the Cube — a highly adaptable space for research and experimentation in immersive environments.

Cantore was tipped off by Kathryn Prociv, a Virginia Tech geography graduate who is now a producer at The Weather Channel.

She had been a storm chaser with the Virginia Tech team for three years before completing her master’s degree research on the effects of changes in land surfaces on rotating storm intensity in the Appalachian Mountain region.

When Prociv asked her former instructor Dave Carroll what was happening at her alma mater, he told her about the tornado re-creation in the Cube. Cantore promptly made arrangements to visit, accompanied by Greg Forbes, The Weather Channel’s severe weather expert.

Real weather delayed the visit a few months, but on Feb. 6 Cantore was immersed in the re-created storm and broadcasting live.

The project was born when Bill Carstensen, a professor and head of the Department of Geography, told Benjamin Knapp, director of the Institute of Creativity, Arts, and Technology, about Carroll’s 3-D images of storms.

Subsequently, a $25,000 Science, Engineering, Art, and Design grant from the institute made it possible to hire Kenyon Gladu of Troutville, Virginia, a junior majoring in meteorology, and Trevor White of Henrico, Virginia, a master’s student in geography.

Gladu worked with radar data and White did the programming to retrieve the needed NEXRAD (Next-Generation Radar) data and render it appropriately. Institute staffer Run Yu of Beijing, China, a computer science doctoral student in the College of Engineering, placed the storm in the cube.

“We decided to produce that tornadic supercell because it was a catastrophic event,” said Carroll. He was south of Moore with the Virginia Tech storm chase team at the time it occurred. The team members can often safely position themselves within a mile of a storm, but not in that instance.

“It formed in the suburbs of Oklahoma City. We couldn’t engage the storm because of the hazards in that environment — traffic, people fleeing,” he said. “We had to back off.”

“People on the ground could not observe that storm from all angles and directions,” said Carstensen. “But NEXRAD radar captured data throughout the storm. It provided hundreds of thousands of data points in 3-D with several attributes at each data point, including the intensity of precipitation and the direction and speed of floating particulates.

“Our meteorology degree program ties in geospatial science with weather data — to meld atmospheric data with ground data. Geospatial science can register ground data — the rolling hills of Oklahoma and the land cover, such as agriculture, prairie, forests, and urban development. So in this re-creation of the Moore storm, there is the land cover on the ground and the storm above in perfect position.”

The Cube allows complete tracking of where a subject is standing, moving, and looking. An Oculus head-mounted display provides an image of what the subject would see from any vantage point. If there are two people in the cube, they will see each other as avatars and will be able to see different points of view and exchange information.

“Eventually, you will be able to zoom in, to control the scale of what you see,” said Carstensen.

“It’s like a game environment in which you are embedded in the computer,” explained Carroll. “You can then study storms from different perspectives than in the field. You can peel away the outer layers of rain so you can see the business end of the storm. It is a more effective way of looking at storm structure.”

“It will be a valuable tool for researchers, forecasters, and students,” said Carstensen.

The ultimate goal is to bring real-time radar into the Cube — “real time” in this instance being only a four- or five-minute delay. Carstensen and Carroll met with Mike Kleist, a Virginia Tech mathematics graduate who is now vice president of engineering at Weather Services International (WSI), a weather graphics software company.

“Mike said real time was absolutely doable,” said Carstensen. “We could visualize the whole East Coast, or any place that has been mapped, overlain by a snow storm, or a storm surge model.”

“This has great potential for emergency managers,” said Carroll.

Contact Information
Lynn Davis
540-231-6157
davisl@vt.edu

Lynn Davis | newswise
Further information:
http://www.vt.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>