Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather Channel's Cantore Experiences 3-D Tornado Simulation at Virginia Tech

09.02.2015

Re-creating a tornado in 3-D provides a more effective way to study storms

When The Weather Channel meteorologist Jim Cantore stepped into an EF-5 tornado re-created in 3-D in a four-story immersive installation at Virginia Tech, his perspective was that of someone 7,000 feet tall.


Virginia Tech

The Weather Channel's Jim Cantore using a headset that shows a virtual reality style view of the activity in a tornado.

Beneath him was the landscape of Moore, Oklahoma. Around him was the storm that killed 24 people in May 2013.

With support from Virginia Tech’s Institute of Creativity, Arts, and Technology, a student and faculty team from the geography department in the College of Natural Resources and Environment created the storm in the Moss Arts Center facility known as the Cube — a highly adaptable space for research and experimentation in immersive environments.

Cantore was tipped off by Kathryn Prociv, a Virginia Tech geography graduate who is now a producer at The Weather Channel.

She had been a storm chaser with the Virginia Tech team for three years before completing her master’s degree research on the effects of changes in land surfaces on rotating storm intensity in the Appalachian Mountain region.

When Prociv asked her former instructor Dave Carroll what was happening at her alma mater, he told her about the tornado re-creation in the Cube. Cantore promptly made arrangements to visit, accompanied by Greg Forbes, The Weather Channel’s severe weather expert.

Real weather delayed the visit a few months, but on Feb. 6 Cantore was immersed in the re-created storm and broadcasting live.

The project was born when Bill Carstensen, a professor and head of the Department of Geography, told Benjamin Knapp, director of the Institute of Creativity, Arts, and Technology, about Carroll’s 3-D images of storms.

Subsequently, a $25,000 Science, Engineering, Art, and Design grant from the institute made it possible to hire Kenyon Gladu of Troutville, Virginia, a junior majoring in meteorology, and Trevor White of Henrico, Virginia, a master’s student in geography.

Gladu worked with radar data and White did the programming to retrieve the needed NEXRAD (Next-Generation Radar) data and render it appropriately. Institute staffer Run Yu of Beijing, China, a computer science doctoral student in the College of Engineering, placed the storm in the cube.

“We decided to produce that tornadic supercell because it was a catastrophic event,” said Carroll. He was south of Moore with the Virginia Tech storm chase team at the time it occurred. The team members can often safely position themselves within a mile of a storm, but not in that instance.

“It formed in the suburbs of Oklahoma City. We couldn’t engage the storm because of the hazards in that environment — traffic, people fleeing,” he said. “We had to back off.”

“People on the ground could not observe that storm from all angles and directions,” said Carstensen. “But NEXRAD radar captured data throughout the storm. It provided hundreds of thousands of data points in 3-D with several attributes at each data point, including the intensity of precipitation and the direction and speed of floating particulates.

“Our meteorology degree program ties in geospatial science with weather data — to meld atmospheric data with ground data. Geospatial science can register ground data — the rolling hills of Oklahoma and the land cover, such as agriculture, prairie, forests, and urban development. So in this re-creation of the Moore storm, there is the land cover on the ground and the storm above in perfect position.”

The Cube allows complete tracking of where a subject is standing, moving, and looking. An Oculus head-mounted display provides an image of what the subject would see from any vantage point. If there are two people in the cube, they will see each other as avatars and will be able to see different points of view and exchange information.

“Eventually, you will be able to zoom in, to control the scale of what you see,” said Carstensen.

“It’s like a game environment in which you are embedded in the computer,” explained Carroll. “You can then study storms from different perspectives than in the field. You can peel away the outer layers of rain so you can see the business end of the storm. It is a more effective way of looking at storm structure.”

“It will be a valuable tool for researchers, forecasters, and students,” said Carstensen.

The ultimate goal is to bring real-time radar into the Cube — “real time” in this instance being only a four- or five-minute delay. Carstensen and Carroll met with Mike Kleist, a Virginia Tech mathematics graduate who is now vice president of engineering at Weather Services International (WSI), a weather graphics software company.

“Mike said real time was absolutely doable,” said Carstensen. “We could visualize the whole East Coast, or any place that has been mapped, overlain by a snow storm, or a storm surge model.”

“This has great potential for emergency managers,” said Carroll.

Contact Information
Lynn Davis
540-231-6157
davisl@vt.edu

Lynn Davis | newswise
Further information:
http://www.vt.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>