Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wave of the future: Terahertz chips a new way of seeing through matter

09.02.2017

Electromagnetic pulses lasting one millionth of a millionth of a second may hold the key to advances in medical imaging, communications and drug development. But the pulses, called terahertz waves, have long required elaborate and expensive equipment to use.

Now, researchers at Princeton University have drastically shrunk much of that equipment: moving from a tabletop setup with lasers and mirrors to a pair of microchips small enough to fit on a fingertip.


Princeton University researchers have drastically shrunk the equipment for producing terahertz -- important electromagnetic pulses lasting one millionth of a millionth of a second -- from a tabletop setup with lasers and mirrors to a pair of microchips small enough to fit on a fingertip (above). The simpler, cheaper generation of terahertz has potential for advances in medical imaging, communications and drug development.

Photos by Frank Wojciechowski for the Office of Engineering Communications

In two articles recently published in the IEEE Journal of Solid State Circuits, the researchers describe one microchip that can generate terahertz waves, and a second chip that can capture and read intricate details of these waves.

"The system is realized in the same silicon chip technology that powers all modern electronic devices from smartphones to tablets, and therefore costs only a few dollars to make on a large scale" said lead researcher Kaushik Sengupta, a Princeton assistant professor of electrical engineering.

Terahertz waves are part of the electromagnetic spectrum -- the broad class of waves that includes radio, X-rays and visible light -- and sit between the microwave and infrared light wavebands. The waves have some unique characteristics that make them interesting to science. For one, they pass through most non-conducting material, so they could be used to peer through clothing or boxes for security purposes, and because they have less energy than X-rays, they don't damage human tissue or DNA.

Terahertz waves also interact in distinct ways with different chemicals, so they can be used to characterize specific substances. Known as spectroscopy, the ability to use light waves to analyze material is one of the most promising -- and the most challenging -- applications of terahertz technology, Sengupta said.

To do it, scientists shine a broad range of terahertz waves on a target then observe how the waves change after interacting with it. The human eye performs a similar type of spectroscopy with visible light -- we see a leaf as green because light in the green light frequency bounces off the chlorophyll-laden leaf.

The challenge has been that generating a broad range of terahertz waves and interpreting their interaction with a target requires a complex array of equipment such as bulky terahertz generators or ultrafast lasers. The equipment's size and expense make the technology impractical for most applications.

Researchers have been working for years to simplify these systems. In September, Sengupta's team reported a way to reduce the size of the terahertz generator and the apparatus that interprets the returning waves to a millimeter-sized chip. The solution lies in re-imaging how an antenna functions. When terahertz waves interact with a metal structure inside the chip, they create a complex distribution of electromagnetic fields that are unique to the incident signal. Typically, these subtle fields are ignored, but the researchers realized that they could read the patterns as a sort of signature to identify the waves. The entire process can be accomplished with tiny devices inside the microchip that read terahertz waves.

"Instead of directly reading the waves, we are interpreting the patterns created by the waves," Sengupta said. "It is somewhat like looking for a pattern of raindrops by the ripples they make in a pond."

Daniel Mittleman, a professor of engineering at Brown University, said the development was "a very innovative piece of work, and it potentially has a lot of impact." Mittleman, who is the vice chair of the International Society for Infrared Millimeter and Terahertz Waves, said scientists still have work to do before the terahertz band can begin to be used in everyday devices, but the developments are promising.

"It is a very big puzzle with many pieces, and this is just one, but it is a very important one," said Mittleman, who is familiar with the work but had no role in it.

On the terahertz-generation end, much of the challenge is creating a wide range of wavelengths within the terahertz band, particularly in a microchip. The researchers realized they could overcome the problem by generating multiple wavelengths on the chip. They then used precise timing to combine these wavelengths and create very sharp terahertz pulses.

In an article published Dec. 14 in the IEEE Journal of Solid State Circuits, the researchers explained how they created a chip to generate the terahertz waves. The next step, the researchers said, is to extend the work farther along the terahertz band. "Right now we are working with the lower part of the terahertz band," said Xue Wu, a Princeton doctoral student in electrical engineering and an author on both papers.

"What can you do with a billion transistors operating at terahertz frequencies?" Sengupta asked. "Only by re-imagining these complex electromagnetic interactions from fundamental principles can we invent game-changing new technology."

The paper "On-chip THz spectroscope exploiting electromagnetic scattering with multi-port antenna" was published Sept. 2, and the paper "Dynamic waveform shaping with picosecond time widths" was published Dec. 14, both by IEEE Journal of Solid State Circuits. The research was supported in part by the National Science Foundation's Division of Electrical, Communications and Cyber Systems (grant nos. ECCS-1408490 and ECCS-1509560).

Media Contact

john sullivan
js29@princeton.edu
609-258-4597

 @eprinceton

http://engineering.princeton.edu/ 

john sullivan | EurekAlert!

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>