Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-high Data Rate Transmission with Steerable Antennas Using Terahertz Frequencies

23.03.2015

At the NGMN Industry Conference and Exhibition taking place at Frankfurt on 24-25 March 2015 the German TERAPAN (Terahertz Communication for future Personal Area Networks) consortium demonstrates multi-gigabit data rate transmission at a carrier frequency of 300 Gigahertz. For the first time steerable antennas are employed at these elevated frequency bands to enable advanced applications in future indoor wireless networks such as smart offices and data centers. Project partners are the Technische Universität Braunschweig, the Universität Stuttgart and Fraunhofer Institut für angewandte Festkörperphysik at Freiburg

Using the terahertz frequency spectrum (300 Gigahertz – 3 Terahertz) opens up the possibility for wireless communication links that can exchange terabytes of data within a few seconds.


Terahertz transmitter on a mechanical rotation unit during a data transmission

TU Braunschweig/IfN


Terahertz receiver on a mechanical rotation unit during a data transmission

TU Braunschweig/IfN

The cost-efficient implementation is possible for the first time using novel terahertz monolithically integrated transceiver chips and will pave the way for future wireless multi-gigabit communications.

The goal of the TERAPAN project aims at demonstrating adaptive wireless point-to-point terahertz communication systems for indoor environments and validating their performance for distances of up to 10 meters at data rates of up to 100 Gigabit per second .

"This includes building the demonstrator with 35 nanometers InGaAs/GaAs-based chips. The validation project is a milestone towards the development of commercial applications of wireless transmission at Terahertz frequencies and complement the ongoing standardization activities in this area", says Prof. Thomas Kürner, TERAPAN project coordinator.

TERAPAN is funded by the German Federal Ministry of Education and Research under the framework of its VIP (validating the innovation potential) initiative and runs from August 2013 to July 2016.

The Project partners complement their expertise in design and fabrication of monolithically integrated transceiver chips including their characterization with the design of wireless systems at terahertz frequencies.

Contact

Prof. Dr.-Ing. Thomas Kürner
Institut für Nachrichtentechnik
Technische Universität Braunschweig
Schleinitzstraße 22
D-38106 Braunschweig
Phone: +49 531/391-2416
E-Mail: t.kuerner@tu-braunschweig.de
www.ifn.ing.tu-bs.de

Prof. Dr.-Ing. Ingmar Kallfass
Institut für Robuste Leistungshalbleitersysteme
Universität Stuttgart
Pfaffenwaldring 47
D-70569 Stuttgart
Tel.: +49 711/685-68747
E-Mail: ingmar.kallfass@ilh.uni-stuttgart.de
www.ilh.uni-stuttgart.de

Dr.-Ing. Thomas Merkle
Fraunhofer IAF
Institut für angewandte Festkörperphysik
Tullastrasse 72
79108 Freiburg
Phone: +49 761/5159-555
E-Mail: thomas.merkle@iaf.fraunhofer.de
www.iaf.fraunhofer.de

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=8767
http://www.terapan.de
http://www.ngmn.org

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Quantum Technology for Advanced Imaging – QUILT
24.04.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Paint job transforms walls into sensors, interactive surfaces
24.04.2018 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>