Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-high Data Rate Transmission with Steerable Antennas Using Terahertz Frequencies

23.03.2015

At the NGMN Industry Conference and Exhibition taking place at Frankfurt on 24-25 March 2015 the German TERAPAN (Terahertz Communication for future Personal Area Networks) consortium demonstrates multi-gigabit data rate transmission at a carrier frequency of 300 Gigahertz. For the first time steerable antennas are employed at these elevated frequency bands to enable advanced applications in future indoor wireless networks such as smart offices and data centers. Project partners are the Technische Universität Braunschweig, the Universität Stuttgart and Fraunhofer Institut für angewandte Festkörperphysik at Freiburg

Using the terahertz frequency spectrum (300 Gigahertz – 3 Terahertz) opens up the possibility for wireless communication links that can exchange terabytes of data within a few seconds.


Terahertz transmitter on a mechanical rotation unit during a data transmission

TU Braunschweig/IfN


Terahertz receiver on a mechanical rotation unit during a data transmission

TU Braunschweig/IfN

The cost-efficient implementation is possible for the first time using novel terahertz monolithically integrated transceiver chips and will pave the way for future wireless multi-gigabit communications.

The goal of the TERAPAN project aims at demonstrating adaptive wireless point-to-point terahertz communication systems for indoor environments and validating their performance for distances of up to 10 meters at data rates of up to 100 Gigabit per second .

"This includes building the demonstrator with 35 nanometers InGaAs/GaAs-based chips. The validation project is a milestone towards the development of commercial applications of wireless transmission at Terahertz frequencies and complement the ongoing standardization activities in this area", says Prof. Thomas Kürner, TERAPAN project coordinator.

TERAPAN is funded by the German Federal Ministry of Education and Research under the framework of its VIP (validating the innovation potential) initiative and runs from August 2013 to July 2016.

The Project partners complement their expertise in design and fabrication of monolithically integrated transceiver chips including their characterization with the design of wireless systems at terahertz frequencies.

Contact

Prof. Dr.-Ing. Thomas Kürner
Institut für Nachrichtentechnik
Technische Universität Braunschweig
Schleinitzstraße 22
D-38106 Braunschweig
Phone: +49 531/391-2416
E-Mail: t.kuerner@tu-braunschweig.de
www.ifn.ing.tu-bs.de

Prof. Dr.-Ing. Ingmar Kallfass
Institut für Robuste Leistungshalbleitersysteme
Universität Stuttgart
Pfaffenwaldring 47
D-70569 Stuttgart
Tel.: +49 711/685-68747
E-Mail: ingmar.kallfass@ilh.uni-stuttgart.de
www.ilh.uni-stuttgart.de

Dr.-Ing. Thomas Merkle
Fraunhofer IAF
Institut für angewandte Festkörperphysik
Tullastrasse 72
79108 Freiburg
Phone: +49 761/5159-555
E-Mail: thomas.merkle@iaf.fraunhofer.de
www.iaf.fraunhofer.de

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=8767
http://www.terapan.de
http://www.ngmn.org

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>