Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-high Data Rate Transmission with Steerable Antennas Using Terahertz Frequencies

23.03.2015

At the NGMN Industry Conference and Exhibition taking place at Frankfurt on 24-25 March 2015 the German TERAPAN (Terahertz Communication for future Personal Area Networks) consortium demonstrates multi-gigabit data rate transmission at a carrier frequency of 300 Gigahertz. For the first time steerable antennas are employed at these elevated frequency bands to enable advanced applications in future indoor wireless networks such as smart offices and data centers. Project partners are the Technische Universität Braunschweig, the Universität Stuttgart and Fraunhofer Institut für angewandte Festkörperphysik at Freiburg

Using the terahertz frequency spectrum (300 Gigahertz – 3 Terahertz) opens up the possibility for wireless communication links that can exchange terabytes of data within a few seconds.


Terahertz transmitter on a mechanical rotation unit during a data transmission

TU Braunschweig/IfN


Terahertz receiver on a mechanical rotation unit during a data transmission

TU Braunschweig/IfN

The cost-efficient implementation is possible for the first time using novel terahertz monolithically integrated transceiver chips and will pave the way for future wireless multi-gigabit communications.

The goal of the TERAPAN project aims at demonstrating adaptive wireless point-to-point terahertz communication systems for indoor environments and validating their performance for distances of up to 10 meters at data rates of up to 100 Gigabit per second .

"This includes building the demonstrator with 35 nanometers InGaAs/GaAs-based chips. The validation project is a milestone towards the development of commercial applications of wireless transmission at Terahertz frequencies and complement the ongoing standardization activities in this area", says Prof. Thomas Kürner, TERAPAN project coordinator.

TERAPAN is funded by the German Federal Ministry of Education and Research under the framework of its VIP (validating the innovation potential) initiative and runs from August 2013 to July 2016.

The Project partners complement their expertise in design and fabrication of monolithically integrated transceiver chips including their characterization with the design of wireless systems at terahertz frequencies.

Contact

Prof. Dr.-Ing. Thomas Kürner
Institut für Nachrichtentechnik
Technische Universität Braunschweig
Schleinitzstraße 22
D-38106 Braunschweig
Phone: +49 531/391-2416
E-Mail: t.kuerner@tu-braunschweig.de
www.ifn.ing.tu-bs.de

Prof. Dr.-Ing. Ingmar Kallfass
Institut für Robuste Leistungshalbleitersysteme
Universität Stuttgart
Pfaffenwaldring 47
D-70569 Stuttgart
Tel.: +49 711/685-68747
E-Mail: ingmar.kallfass@ilh.uni-stuttgart.de
www.ilh.uni-stuttgart.de

Dr.-Ing. Thomas Merkle
Fraunhofer IAF
Institut für angewandte Festkörperphysik
Tullastrasse 72
79108 Freiburg
Phone: +49 761/5159-555
E-Mail: thomas.merkle@iaf.fraunhofer.de
www.iaf.fraunhofer.de

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=8767
http://www.terapan.de
http://www.ngmn.org

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>