Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB Rolls Out New Technology to Help Users Combat Mobile Malware Attacks

31.03.2015

University of Alabama at Birmingham researchers have developed simple but effective techniques to prevent sophisticated malware from secretly attacking smartphones. This new malware defense is being presented at the IEEE International Conference on Pervasive Computing and Communications, or PerCom, today in St. Louis.

As mobile phones increase in functionality, they are becoming increasingly ubiquitous in everyday life. At the same time, these devices also are becoming easy targets for malicious activities.


UAB News

One of the primary reasons for such malware explosion is user willingness to download applications from untrusted sources that may host apps with hidden malicious codes. Once installed on a smartphone, such malware can exploit it in various ways.

For example, it can access the smartphone’s resources to learn sensitive information about the user, secretly use the camera to spy on the user, make premium-rate phone calls without the user’s knowledge, or use a Near Field Communication, or NFC, reader to scan for physical credit cards within its vicinity.

Such malware already is prevalent, and researchers and practitioners anticipate that this and other forms of malware will become one of the greatest threats affecting millions of smartphone users in the near future.

“The most fundamental weakness in mobile device security is that the security decision process is dependent on the user,” said Nitesh Saxena, Ph.D., the director of the Security and Privacy In Emerging computing and networking Systems (SPIES) Lab and an associate professor of computer and information sciences in the College of Arts and Sciences at UAB.

“For instance, when installing an Android app, the user is prompted to choose whether or not the application should have permissions to access a given service on the phone. The user may be in a rush or distracted, or maybe it is the user’s kid who has the phone. Whatever the case may be, it is a well-known problem that people do not look at these warnings; they just click ‘yes.’”

Current operating systems provide inadequate security against these malware attacks, putting the burden of prevention upon the user. The current anti-virus systems are ineffective against such constantly evolving malware. UAB pursued research to find a mechanism that would defend against mobile malware that can exploit critical and sensitive mobile device services, especially focusing on the phone’s calling service, camera and NFC.

This study from researchers within the UAB College of Arts and Sciences Department of Computer and Information Sciences and Center for Information Assurance and Joint Forensics Research explains how natural hand gestures associated with three primary smartphone services — calling, snapping and tapping — can be detected and have the ability to withstand attacks using motion, position and ambient sensors available on most smartphones as well as machine learning classifiers.

If a human user attempts to access a service, the gesture would be present and access will be allowed. In contrast, if the malware program makes an access request, the gesture will be missing and access will be blocked.

To demonstrate the effectiveness of this approach, researchers collected data from multiple phone models and multiple users in real-life or near real-life scenarios, simulating benign settings and adversarial scenarios.

The results showed that the three gestures can be detected with a high overall accuracy and can be distinguished from one another and from other benign or malicious activities to create a viable malware defense.

“In this method, something as simple as a human gesture can solve a very complex problem,” Saxena said. “It turns the phone’s weakest security component — the user — into its strongest defender.”

The research team believes that, in the future, transparent gestures associated with other smartphone services, such as sending SMS or email, also can be integrated with this system. The researchers also aim to commercialize this technology in the near future.

UAB graduate student Babins Shrestha, a researcher in UAB’s SPIES Lab, co-authored the article and is presenting the paper at PerCom. The other members who co-authored the paper include UAB doctoral student Manar Mohamed, UAB undergraduate student Anders Borg, and doctoral student Sandeep Tamrakar of Aalto University, Finland.

About UAB
Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham is an internationally renowned research university and academic medical center and the state of Alabama’s largest employer, with some 23,000 employees and an economic impact exceeding $5 billion annually on the state. The five pillars of UAB’s mission include education, research, patient care, community service and economic development. UAB: Knowledge that will change your world. Learn more at www.uab.edu.

EDITOR’S NOTE: The University of Alabama at Birmingham is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on all subsequent references.

FACEBOOK: www.facebook.com/UAB.edu 

TEXT: www.uab.edu/news 

TWEETS: www.twitter.com/uabnews 

VIDEO: www.youtube.com/uabnews

Contact Information
Katherine Shonesy
Media Specialist
kshonesy@uab.edu
Phone: 205-975-3997

Katherine Shonesy | newswise
Further information:
http://www.uab.edu

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>