Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trend-setting research project 5GNOW on the future of mobile communications rated “excellent”

03.08.2015

The European Commission has awarded the highest scientific excellence honor to the 5GNOW project, one of the first EU research projects aimed at advancing development of the next generation of mobile networks (5G) and strengthening European competitiveness. In the final project review in Brussels, the European Commission acknowledged a major impact which the project had on 5G pre-standardization.

Researchers of 5GNOW, a research project funded by the 7th Framework Pro-gramme for Research and Technological Development of the European Commis-sion, came from the Fraunhofer Heinrich Hertz Institute (project lead), Alcatel-Lucent Germany (technical lead), and partners like the Technical University Dres-den, the French institute for applied research CEA LETI, the Polish software de-veloper IS-Wireless as well as National Instruments Hungary.

The partners analyzed and selected several waveform technologies for the next generation of mobile networks (5G). 5G is expected to make intriguing application visions such as the Internet of Things, Gigabit Wireless Connectivity and the Tactile Internet a reality.

In order to support such diverse services, the radio access part has to be flexible, scalable, content-aware, robust, reliable, and efficient in terms of energy and spectrum. Wireless data is transported by radio waves which can have different forms.

Such “waveforms” are of key interest to 5G researchers, because they determine how well specific use cases can be supported in 5G. 5GNOW has questioned the underlying design principles of today’s 4G LTE-A radio access network and designed, improved and assessed new candidate waveform technologies for 5G.

5GNOW project coordinator PD Dr. Gerhard Wunder, Fraunhofer HHI, praises the success achieved: “5GNOW truly made an impact on both from academic and industrial pre-standardization. 5GNOW tools and technologies will be used in the upcoming standardization phase for 5G.”

Thorsten Wild, technical lead of 5GNOW, from Alcatel-Lucent´s Bell Labs, says: “5G NOW helped to make the scientific community aware of the opportunities which waveforms offer in future mobile systems. The candidate waveforms which had been developed within the project are a big step forward in defining the key ingredients of a future 5G standard. 5GNOW has laid the foundation for the upcoming standardization phase.”

One of the key technology components which came out of 5GNOW, is a filtering functionality together with advanced signal processing. This provides more than 100 times better interference rejection in a fragmented spectrum of scenarios and offers higher network spectral efficiency and, thus, better user service provision. In addition, 5GNOW has demonstrated that the candidate waveforms offer the robustness and latency required to leverage efficient radio access for the Internet of Things and the Tactile Internet. These results indeed enable an efficient and scalable air interface supporting the highly varying set of requirements originating from main 5G drivers.

In the course of the project, 5GNOW results have been highly visible through great showcase and demonstration activities at flagship conferences and industry expositions in the ICT sector. Unprecedented highlights have been the first ever “Demo Night” at the IEEE GLOBECOM 2014 in Austin, Texas, and the participa-tion in the Mobile World Congress 2015 in March in Barcelona as part of the first European Commission’s 5G booth, and which was visited by Günther Oettinger, EU Commissioner for Digital Economy and Society, and European Commission Vice-President Andrus Ansip.

These public demonstrations have proved that 5GNOW new air interface technology components are real and beneficial. 5GNOW has eventually fostered the Horizon 2020 5G Public Private Partnership (5GPPP) Initiative by the European Commission. 5GNOW research will be followed up in the EU´s FANTASTIC-5G project which started on July 1st, 2015.

Weitere Informationen:

http://www.fantastic5g.eu
http://www.5gnow.eu

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>