Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trend-setting research project 5GNOW on the future of mobile communications rated “excellent”

03.08.2015

The European Commission has awarded the highest scientific excellence honor to the 5GNOW project, one of the first EU research projects aimed at advancing development of the next generation of mobile networks (5G) and strengthening European competitiveness. In the final project review in Brussels, the European Commission acknowledged a major impact which the project had on 5G pre-standardization.

Researchers of 5GNOW, a research project funded by the 7th Framework Pro-gramme for Research and Technological Development of the European Commis-sion, came from the Fraunhofer Heinrich Hertz Institute (project lead), Alcatel-Lucent Germany (technical lead), and partners like the Technical University Dres-den, the French institute for applied research CEA LETI, the Polish software de-veloper IS-Wireless as well as National Instruments Hungary.

The partners analyzed and selected several waveform technologies for the next generation of mobile networks (5G). 5G is expected to make intriguing application visions such as the Internet of Things, Gigabit Wireless Connectivity and the Tactile Internet a reality.

In order to support such diverse services, the radio access part has to be flexible, scalable, content-aware, robust, reliable, and efficient in terms of energy and spectrum. Wireless data is transported by radio waves which can have different forms.

Such “waveforms” are of key interest to 5G researchers, because they determine how well specific use cases can be supported in 5G. 5GNOW has questioned the underlying design principles of today’s 4G LTE-A radio access network and designed, improved and assessed new candidate waveform technologies for 5G.

5GNOW project coordinator PD Dr. Gerhard Wunder, Fraunhofer HHI, praises the success achieved: “5GNOW truly made an impact on both from academic and industrial pre-standardization. 5GNOW tools and technologies will be used in the upcoming standardization phase for 5G.”

Thorsten Wild, technical lead of 5GNOW, from Alcatel-Lucent´s Bell Labs, says: “5G NOW helped to make the scientific community aware of the opportunities which waveforms offer in future mobile systems. The candidate waveforms which had been developed within the project are a big step forward in defining the key ingredients of a future 5G standard. 5GNOW has laid the foundation for the upcoming standardization phase.”

One of the key technology components which came out of 5GNOW, is a filtering functionality together with advanced signal processing. This provides more than 100 times better interference rejection in a fragmented spectrum of scenarios and offers higher network spectral efficiency and, thus, better user service provision. In addition, 5GNOW has demonstrated that the candidate waveforms offer the robustness and latency required to leverage efficient radio access for the Internet of Things and the Tactile Internet. These results indeed enable an efficient and scalable air interface supporting the highly varying set of requirements originating from main 5G drivers.

In the course of the project, 5GNOW results have been highly visible through great showcase and demonstration activities at flagship conferences and industry expositions in the ICT sector. Unprecedented highlights have been the first ever “Demo Night” at the IEEE GLOBECOM 2014 in Austin, Texas, and the participa-tion in the Mobile World Congress 2015 in March in Barcelona as part of the first European Commission’s 5G booth, and which was visited by Günther Oettinger, EU Commissioner for Digital Economy and Society, and European Commission Vice-President Andrus Ansip.

These public demonstrations have proved that 5GNOW new air interface technology components are real and beneficial. 5GNOW has eventually fostered the Horizon 2020 5G Public Private Partnership (5GPPP) Initiative by the European Commission. 5GNOW research will be followed up in the EU´s FANTASTIC-5G project which started on July 1st, 2015.

Weitere Informationen:

http://www.fantastic5g.eu
http://www.5gnow.eu

Anne Rommel | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>