Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards the T-1000: Liquid metals propel future electronics

04.08.2016

Self-propelling liquid metals a critical step to future elastic electronics

Science fiction is inching closer to reality with the development of revolutionary self-propelling liquid metals -- a critical step towards future elastic electronics.


Continuous motion of a self-propelling liquid metal droplet under a pH gradient, shown at different time intervals. The droplet is placed in a fluidic channel, midway between two reservoirs filled with different electrolytes of acidic and basic nature.

Credit: RMIT University

While building a shape-shifting liquid metal T-1000 Terminator may still be far on the horizon, the pioneering work by researchers at RMIT University in Melbourne, Australia, is setting the foundation for moving beyond solid state electronics towards flexible and dynamically reconfigurable soft circuit systems.

Watch the YouTube video: http://bit.ly/liquidmetalresearch

Modern electronic technologies like smart phones and computers are mainly based on circuits that use solid state components, with fixed metallic tracks and semiconducting devices.

But researchers dream of being able to create truly elastic electronic components -- soft circuit systems that can act more like live cells, moving around autonomously and communicating with each other to form new circuits rather than being stuck in one configuration.

Liquid metals, in particular non-toxic alloys of gallium, have so far offered the most promising path for realising that dream.

As well as being incredibly malleable, any droplet of liquid metal contains a highly-conductive metallic core and an atomically thin semiconducting oxide skin -- all the essentials needed for making electronic circuits.

To work out how to enable liquid metal to move autonomously, Professor Kourosh Kalantar-zadeh and his group from the School of Engineering at RMIT first immersed liquid metal droplets in water.

"Putting droplets in another liquid with an ionic content can be used for breaking symmetry across them and allow them to move about freely in three dimensions, but so far we have not understood the fundamentals of how liquid metal interacts with surrounding fluid," Kalantar-zadeh said.

"We adjusted the concentrations of acid, base and salt components in the water and investigated the effect.

"Simply tweaking the water's chemistry made the liquid metal droplets move and change shape, without any need for external mechanical, electronic or optical stimulants.

"Using this discovery, we were able to create moving objects, switches and pumps that could operate autonomously - self-propelling liquid metals driven by the composition of the surrounding fluid."

The research lays the foundation for being able to use "electronic" liquid metals to make 3D electronic displays and components on demand, and create makeshift and floating electronics.

"Eventually, using the fundamentals of this discovery, it may be possible to build a 3D liquid metal humanoid on demand - like the T-1000 Terminator but with better programming," Kalantar-zadeh said.

The research, which has potential applications in a range of industries including smart engineering solutions and biomedicine, is published on 4 August in Nature Communications.

In the paper, first author Dr Ali Zavabeti details the precise conditions in which liquid metals can be moved or stretched, how fluid on their surfaces moves around and -- as a result -- how they can make different flows.

The work also explains how the electric charges that accumulate on the surface of liquid metal droplets, together with their oxide skin, can be manipulated and used.

Media Contact

Kourosh Kalantar-zadeh
kourosh.kalantar@rmit.edu.au
61-399-253-254

 @RMIT

http://www.rmit.edu.au 

Kourosh Kalantar-zadeh | EurekAlert!

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>